Nicolas Bacaër

met Femke van den Berg,

•••

Wiskunde en epidemieën

Wiskunde en epidemieën

Nicolas Bacaër

met Femke van den Berg

•••

Nicolas Bacaër (*Institut de recherche pour le développement*) nicolas.bacaer@ird.fr

Femke van den Berg (Fera Science Ltd, femke.vandenberg@fera.co.uk)

•••

Lezers die de papieren versie van dit boek willen kopen, kunnen een e-mail sturen naar nicolas.bacaer@ird.fr.

Omslagfoto's: David Teniers de Jonge (Antwerpen, 1610 – Brussel, 1690), Zomer / Winter (~1660) © Musée du Louvre.

Titre original : Mathématiques et épidémies © *Cassini, Paris, 2021*

Pour l'édition néerlandaise : © Nicolas Bacaër, Paris, 2022 ISBN : 979-10-396-????-? Dépôt légal : ? 2022

Deel I

Epidemische modellen met constante coëfficiënten

Hoofdstuk 1

S-I-R modellen

Wij bestuderen het asymptotische gedrag van de tijd die nodig is voor een epidemie om haar piek te bereiken wanneer de populatie groot is en de epidemie gemodelleerd word door een differentieel systeem van het type S-I-R.

1.1 Vergelijkingen

Beschouw een populatie van grootte N die blootgesteld is aan een besmettelijke ziekte:

- we merken op dat S(t) het aantal mensen is dat op tijdstip t waarschijnlijk besmet zal zijn; dit wordt in het algemeen aangeduid als "vatbare mensen", hoewel het bijvoeglijk naamwoord kan worden verward met de andere betekenis, "gemakkelijk te besmetten";
- we merken op dat I(t) het aantal besmette personen is;
- we merken op dat R(t) het aantal personen is dat door inperking, herstel, of overlijden niet meer aan de transmissie bijdraagt; bij herstelde personen wordt ervan uitgegaan dat zij immuun zijn en immuun blijven zonder tijds-beperking.

Dus

$$\mathbf{N} = \mathbf{S}(t) + \mathbf{I}(t) + \mathbf{R}(t)$$

is de totale bevolking. De verschillende klassen van individuen worden ook compartimenten genoemd (Fig. 1.1), maar dit betekent niet dat zij fysiek gescheiden zijn: zij blijven met elkaar in contact binnen dezelfde populatie. De totale bevolking wordt verondersteld constant te zijn en groot genoeg om de epidemie redelijkerwijs te kunnen modelleren als een differentieel systeem in plaats van als een stochastisch proces. Wanneer het aantal individuen groot genoeg is, kan men immers op de een of andere manier vergeten dat dit aantal een geheel getal moet zijn en doen alsof het voortdurend varieert. We kunnen ook even voorbijgaan aan de effecten van toeval in het begin van de epidemie, wanneer het aantal besmette personen nog klein is. Wij zullen op deze punten terugkomen in hoofdstuk 5 en in het derde deel van het boek.

Figuur 1.1: De compartimenten van het S-I-R model.

De effectieve contactfrequentie (a > 0 wordt genoteerd als a. Het is het product van twee getallen: het aantal contacten per tijdseenheid en de waarschijnlijkheid van transmissie tijdens een contact tussen een niet-geïnfecteerde persoon en een geïnfecteerde persoon. De eenheid van de frequentie a is dus het omgekeerde van een tijd.

De snelheid waarmee individuen compartiment I verlaten en compartiment R binnenkomen (b > 0) wordt genoteerd als b. Met andere woorden, elk individu in compartiment I heeft een kans b dt om naar compartiment R te gaan gedurende elk klein tijdsinterval dt. Dit impliceert dat de in compartiment I doorgebrachte tijd een willekeurige variabele is die verdeeld is volgens een exponentiële verdeling met parameter b, met de gemiddelde waarde

$$\int_0^{+\infty} \mathrm{e}^{-bx} \, dx = \frac{1}{b}.$$

Dit lijkt misschien onrealistisch, maar het vereenvoudigt de presentatie. Het geval van algemene verdelingen zal herhaaldelijk worden besproken, te beginnen met paragraaf 3.2.

Contacten worden verondersteld willekeurig te zijn, zodat wanneer een niet-geïnfecteerde persoon een andere persoon tegenkomt, de kans dat die persoon geïnfecteerd is gelijk is aan I/N, het aandeel geïnfecteerden in de bevolking. Elke persoon in compartiment S heeft dus een kans $a \times (I/N) \times dt$ om gedurende een klein tijdsinterval dt besmet te raken.

Al deze veronderstellingen leiden tot het beroemde S-I-R model van Ker-

mack en McKendrick (1927) [3, hoofdstuk 18] voor een epidemie:

$$\frac{d\mathbf{S}}{dt} = -a\mathbf{S}\frac{\mathbf{I}}{\mathbf{N}},\tag{1.1}$$

$$\frac{d\mathbf{I}}{dt} = a\mathbf{S}\frac{\mathbf{I}}{\mathbf{N}} - b\mathbf{I},\tag{1.2}$$

$$\frac{d\mathbf{R}}{dt} = b\mathbf{I}.\tag{1.3}$$

Dit is eigenlijk een vereenvoudigde versie van het oorspronkelijke model. Deze laatste liet een willekeurige verdeling toe voor de tijd die in het compartiment werd doorgebracht I.

Beschouw de beginvoorwaarden

$$S(0) = N - I_0, \quad I(0) = I_0, \quad R(0) = 0,$$
 (1.4)

met $0 < I_0 < N$. Het getal I_0 is in het algemeen erg klein tegenover N, dat genoteerd staat als $I_0 \ll N$.

Een voorbeeld wordt gegeven in figuur 1.2. Er werd gebruik gemaakt van de software Scilab en zijn functie voor het numeriek oplossen van differentiële systemen met N = 65×10^6 (de bevolking van Frankrijk), I₀ = 1, a = 1/2 per dag en b = 1/4 per dag. In het begin van de epidemie besmet een besmette persoon dus gemiddeld één persoon om de twee dagen (1/a). De gemiddelde duur van de infectie 1/b is 4 dagen. De reproductiviteit \mathcal{R}_0 is in dit zeer eenvoudige geval het gemiddelde aantal secundaire gevallen dat een besmette persoon aan het begin van de epidemie infecteert, d.w.z. het product $a \times (1/b)$. Aldus

$$\mathscr{R}_0 = \frac{a}{b}$$

wat $\mathscr{R}_0 = 2$ oplevert.

Merk op dat $\lambda = a - b$ de groeisnelheid van de epidemie in haar beginstadium is, aangezien we dan $S(t) \approx N$ hebben en

$$\frac{d\mathbf{I}}{dt} \approx (a-b)\mathbf{I}$$

De getallen I(t) en R(t) groeien dus aan het begin als $e^{\lambda t}$. Het percentage λ kan worden geschat op grond van epidemiologische gegevens, bijvoorbeeld door deze gegevens op logaritmische schaal uit te zetten en de helling te meten. Als de gemiddelde duur van de besmetting 1/b bekend is, kunnen het effectieve contactfrequentie $a = \lambda + b$ en de reproductiviteit $\Re_0 = a/b = 1 + \lambda/b$ worden afgeleid. De gemiddelde duur van de besmetting is vaak bekend als het om een eerder geregistreerde ziekte gaat en in

Figuur 1.2: Een simulatie van het S-I-R model met tijd t in dagen op de horizontale as.

het geval van een nieuwe ziekte kan deze bepaald worden door zorgvuldige observatie van een aantal gevallen waarvan de datum van besmetting kon worden vastgesteld.

Opmerking 1.1. De verhoudingen

$$x(t) = S(t)/N, \quad y(t) = I(t)/N, \quad z(t) = R(t)/N$$

zijn oplossingen van het systeem

$$\frac{dx}{dt} = -axy, \quad \frac{dy}{dt} = axy - by, \quad \frac{dz}{dt} = by,$$

met $x(0) = S(0)/N = 1 - I_0/N$, $y(0) = I_0/N$ en z(0) = 0. Hieruit blijkt bijvoorbeeld dat sommige eigenschappen van het model, zoals de datum van de epidemie piek, alleen afhangen van parameters I_0 en N via de verhouding I_0/N .

1.2 Uiteindelijke omvang van de epidemie

Propositie 1.2. *Het stelsel* (1.1)-(1.4) *heeft een unieke oplossing gedefinieerd voor alle* t > 0. *Bovendien zijn* S(t) > 0, I(t) > 0 *en* R(t) > 0 *voor alle* t > 0.

Bewijs. De stelling van Cauchy-Lipschitz [52, Stelling 16.5.5] garandeert het bestaan en de uniciteit van een oplossing van het stelsel (1.1)-(1.4) op een maximaal interval [0; T[. Uit vergelijking (1.1) volgt voor alle 0 < t < T,

$$\mathbf{S}(t) = \mathbf{S}(0) \exp\left(-\frac{a}{N} \int_0^t \mathbf{I}(u) \, du\right) > 0,$$

omdat S(0) > 0. Aangezien vergelijking (1.2) wordt geschreven als

$$\frac{d\mathbf{I}}{dt} = (a\,\mathbf{S}/\mathbf{N} - b)\mathbf{I}_{s}$$

hebben we ook

$$\mathbf{I}(t) = \mathbf{I}(0) \exp\left(\frac{a}{N} \int_0^t \mathbf{S}(u) \, du - bt\right) > 0,$$

omdat I(0) > 0. Tenslotte

$$\mathbf{R}(t) = b \int_0^t \mathbf{I}(u) \, du > 0$$

voor 0 < t < T. Bovendien

$$\frac{d}{dt}(\mathbf{S}+\mathbf{I}+\mathbf{R})=\mathbf{0},$$

dus S(t) + I(t) + R(t) = S(0) + I(0) + R(0) = N. We hebben dus 0 < S(t) < N, 0 < I(t) < N en 0 < R(t) < N voor alle 0 < t < T. Aangezien de oplossingen begrensd blijven op het maximale interval [0; T[, volgt dat $T = +\infty$ [16, corollarium 3.34]. Het stelsel (1.1)-(1.4) heeft dus een unieke oplossing gedefinieerd voor alle t > 0.

Laat $log(\cdot)$ de neperiaanse logaritme zijn.

Propositie 1.3. Functie S(t) is strikt afnemend en convergeert naar limiet S_{∞} . Functie R(t) is strikt stijgend en convergeert naar limiet R_{∞} . Functie I(t) neigt naar 0 als $t \to +\infty$. We hebben dan $S_{\infty} + R_{\infty} = N$. Laten we uitgaan van $x_0 = S(0)/N$. De uiteindelijke omvang van de epidemie is zodanig dat $x_{\infty} = S_{\infty}/N$ de enige oplossing in het interval]0; 1[is van vergelijking

$$\phi(x) \stackrel{\text{def}}{=} 1 - x + \frac{b}{a} \log \frac{x}{x_0} = 0.$$
(1.5)

Als a > b, dan ligt deze oplossing in het deelinterval]0; b/a[.

Bewijs. Volgens stelling 1.2 is S(t) > 0 en I(t) > 0. Daarom

$$\frac{d\mathbf{S}}{dt} = -a\,\mathbf{S}\,\frac{\mathbf{I}}{\mathbf{N}} < 0.$$

Functie S(t) is dus strikt afnemend en geminimaliseerd door 0. Het convergeert naar een limiet S_{∞} wanneer $t \to +\infty$. Op dezelfde manier,

$$\frac{d\mathbf{R}}{dt} = b\mathbf{I} > 0.$$

Functie R(t) is dus strikt stijgend en neemt toe met N. Het convergeert naar een limiet R_{∞} wanneer $t \to +\infty$. Met vergelijkingen (1.1) en (1.3), zien we dat

$$\frac{d\mathbf{R}}{dt} = b\mathbf{I} = -\frac{b\mathbf{N}}{a\mathbf{S}}\frac{d\mathbf{S}}{dt}.$$
$$\mathbf{R}(t) = -\frac{b\mathbf{N}}{a}\log\frac{\mathbf{S}(t)}{\mathbf{S}(0)}.$$
(1.6)

Daarom

In de limiet, leiden we af $S_{\infty} > 0$ en

$$\mathbf{R}_{\infty} = -\frac{b\,\mathbf{N}}{a}\log\frac{\mathbf{S}_{\infty}}{\mathbf{S}(0)}\,.$$

Evenals I(t) = N - S(t) - R(t) convergeert ook de functie I(t) naar een limiet I_{∞} als $t \to +\infty$. Maar als we $I_{\infty} > 0$ hadden, zouden we afleiden

$$\mathbf{R}(t) = b \int_0^t \mathbf{I}(u) \, du \mathop{\longrightarrow}_{t \to +\infty} +\infty,$$

wat onmogelijk is sinds R(t) < N. Daarom $I_{\infty} = 0$ en $S_{\infty} + R_{\infty} = N$. Aldus

$$S_{\infty} = N - R_{\infty} = N + \frac{bN}{a} \log \frac{S_{\infty}}{S(0)}$$

Deze vergelijking bepaalt S_{∞} en dus ook de uiteindelijke omvang van de epidemie R_{∞}. Gedeeld door N, verkrijgen we met de definitie (1.5) van de functie $\phi(x)$: $\phi(x_{\infty}) = 0$ en $0 < x_{\infty} < 1$. Nu

$$\phi'(x) = -1 + \frac{b}{ax}.$$

Laten we twee gevallen onderscheiden. Neem eerst aan dat $a \le b$. Dan dat $\phi'(x) > 0$ op het interval]0; 1[. Functie $\phi(x)$ is strikt stijgend op dit interval. Bovendien, $\phi(x) \to -\infty$ als $x \to 0^+$ en

$$\phi(1) = \frac{b}{a}\log\frac{1}{x_0} > 0$$

sinds $0 < x_0 < 1$. Daarom is er een unieke $x^* \in]0; 1[$ zodanig dat $\phi(x^*) = 0$. Dus $x_{\infty} = x^*$.

Ga nu uit van a > b. Dan is $\phi'(x) > 0$ als 0 < x < b/a, en $\phi'(x) < 0$ als b/a < x < 1. Functie ϕ is strikt stijgend op het interval]0; b/a[en strikt dalend op het interval]b/a; 1[. We hebben

$$\phi(b/a) = 1 - \frac{b}{a} + \frac{b}{a}\log\frac{b/a}{x_0} > 1 - \frac{b}{a} + \frac{b}{a}\log\frac{b}{a}.$$

Laten we stellen dat $\chi(x) = 1 - x + x \log x$. We hebben $\chi'(x) = \log x < 0$ als $x \in]0; 1[$ en $\chi(1) = 0$. Dus $\chi(x) > 0$ als $x \in]0; 1[$. En dus $\phi(b/a) > \chi(b/a) > 0$. We hebben $\phi(x) \to -\infty$ als $x \to 0^+$ en $\phi(1) > 0$. Er is dus een unieke $x^* \in]0; 1[$ zodanig dat $\phi(x^*) = 0$. Bovendien $x^* \in]0; b/a[$ en $x_{\infty} = x^*$.

Opmerking 1.4. Vergelijking (1.5) wordt ook geschreven als

$$x = x_0 \exp\left(-\frac{a}{b}(1-x)\right),$$

of, met z = 1 - x,

$$1 - z = x_0 \exp\left(-\frac{a}{b}z\right).$$

Als a > b, dan $z_{\infty} = \mathbf{R}_{\infty}/\mathbf{N} = 1 - x_{\infty} > 1 - b/a$.

Opmerking 1.5. Oplossing x_{∞} hangt alleen af van parameters a en b via de dimensie-loze verhouding $\Re_0 = a/b$. Door vergelijking (1.5) af te leiden, vinden we

$$-\frac{dx_{\infty}}{d\mathscr{R}_0} - \frac{1}{(\mathscr{R}_0)^2}\log\frac{x_{\infty}}{x_0} + \frac{1}{\mathscr{R}_0x_{\infty}}\frac{dx_{\infty}}{d\mathscr{R}_0} = 0.$$

Aldus

$$\frac{dx_{\infty}}{d\mathcal{R}_0} = \frac{\log \frac{x_{\infty}}{x_0}}{\mathcal{R}_0(1/x_{\infty} - \mathcal{R}_0)} < 0.$$

Net als $z_{\infty} = R_{\infty}/N = 1 - x_{\infty}$ zien we dat de uiteindelijke fractie die een infectie onderging een strikt stijgende functie is van \mathcal{R}_0 . Hoe groter de reproductiviteit \mathcal{R}_0 , hoe groter de uiteindelijke omvang van de epidemie R_{∞} .

Propositie 1.6. Als a < b, dan

$$\mathbf{R}_{\infty} \leqslant \frac{\mathbf{I}_0}{1 - a/b}$$

en $R_{\infty}/N \rightarrow 0$ wanneer $I_0/N \rightarrow 0$.

Bewijs. Zoals voor S(t)/N < 1, hebben we volgens vergelijking (1.2)

$$\frac{d\mathbf{I}}{dt} \leqslant (a-b)\,\mathbf{I} < 0.$$

Daarom I(t) \leq I(0) e^{(a-b)t} en

$$\mathbf{R}_{\infty} = b \int_{0}^{+\infty} \mathbf{I}(u) \, du \leqslant \frac{b \, \mathbf{I}(0)}{b-a}.$$

Opmerking 1.7. Veronderstel $I_0 \ll N$. Als a < b, dan is $z_{\infty} = R_{\infty}/N \approx 0$ volgens de vorige stelling. Als a > b, dan geeft opmerking 1.4 samen met $x_0 \approx 1$

$$1-z_{\infty}\approx\exp\left(-\frac{a}{b}z_{\infty}\right)$$

en $z_{\infty} \neq 0$. Figuur 1.3 illustreert deze formules door te tonen hoe z_{∞} varieert als een functie van $\Re_0 = a/b$. Als $\Re_0 < 1$, is er geen epidemie als zodanig. Als $\Re_0 > 1$ en $\Re_0 \approx 1$, dan geeft een beperkte expansie van de exponentiaal

$$1 - z_{\infty} \approx 1 - \mathscr{R}_0 z_{\infty} + \frac{(\mathscr{R}_0 z_{\infty})^2}{2}$$

en daaruit

$$z_{\infty} \approx 2\left(\mathscr{R}_0 - 1\right). \tag{1.7}$$

Zo leidt een reproductiviteit van $\Re_0 = 1,05$ tot een uiteindelijke epidemie omvang R_{∞}/N die dicht bij 10 % ligt (om precies te zijn 9,4 %).

1.3 Epidemische piek

We hebben in het bewijs van stelling 1.6 gezien dat functie I(t) afnemend is als a < b. In dit geval is er geen epidemie-piek en is de uiteindelijke omvang van de epidemie zeer klein ten opzichte van de totale populatie N indien de begin-voorwaarde I(0) zelf zeer klein is ten opzichte van N, hetgeen in de praktijk meestal het geval is.

In dit deel beperken wij ons daarom tot het geval waarin a > b of nauwkeuriger gezegd $a(1 - I_0/N) > b$, wat bijna hetzelfde is als $I_0/N \ll 1$. Laten we terloops opmerken dat

$$\mathscr{R}_0 = \frac{a}{b} > \frac{1}{1 - I_0/N} > 1.$$

Dan hebben we

$$\frac{dI}{dt}(0) = [a(1 - I_0/N) - b]I_0 > 0.$$

Figuur 1.3: De uiteindelijke fractie van de bevolking die door de epidemie is getroffen, $z_{\infty} = R_{\infty}/N$, als een functie van de reproductiviteit $\Re_0 = a/b$ wanneer $I_0 \ll N$.

De functie S(t) is strikt afnemend. Het daalt van $S(0) = N - I_0 = N(1 - I_0/N) > Nb/a$ naar S_{∞} op het interval $[0; +\infty[$. Of $S_{\infty} < Nb/a$ volgens propositie 1.3. Daarom is er een unieke $\tau > 0$ zodanig dat

$$\mathbf{S}(\tau) = \mathbf{N}b/a.$$

Aangezien

$$\frac{d\mathbf{I}}{dt} = (a\mathbf{S}/\mathbf{N} - b)\mathbf{I}.$$
(1.8)

en als I(t) > 0 voor alle t > 0, zien we dat dI/dt > 0 en functie I(t) strikt toenemend zijn op het interval]0; τ [. Dan is dI/dt < 0 en de functie I(t) is strikt afnemend op het interval] τ ; +∞[. We noemen τ de*epidemische piek*:

$$\mathbf{I}(\tau) = \max_{t>0} \mathbf{I}(t).$$

De hoogte van de piek I(τ) is gemakkelijk te bepalen. Met de relatie (1.6), vinden we

$$\mathbf{S}(\tau) = \frac{\mathbf{N}b}{a}, \quad \mathbf{R}(\tau) = -\frac{\mathbf{N}b}{a}\log\frac{\mathbf{S}(\tau)}{\mathbf{S}(0)}, \quad \mathbf{N} = \mathbf{S}(\tau) + \mathbf{I}(\tau) + \mathbf{R}(\tau).$$

Het resultaat is

$$\frac{\mathbf{I}(\tau)}{\mathbf{N}} = 1 - \frac{\mathbf{S}(\tau)}{\mathbf{N}} - \frac{\mathbf{R}(\tau)}{\mathbf{N}} = 1 - \frac{b}{a} + \frac{b}{a} \log\left(\frac{\mathbf{N}}{\mathbf{N} - \mathbf{I}_0} \frac{b}{a}\right).$$

Als $I_0/N \ll 1$, dan

$$\frac{\mathbf{I}(\tau)}{\mathbf{N}} \approx 1 - \frac{b}{a} + \frac{b}{a}\log\frac{b}{a} = 1 - \frac{1 + \log\mathcal{R}_0}{\mathcal{R}_0}$$

Als bovendien $\mathscr{R}_0 \approx 1$, dan geeft een beperkte ontwikkeling tot orde 2 van de logaritme

$$\frac{{\rm I}(\tau)}{{\rm N}}\approx 1-\frac{1+(\mathscr{R}_0-1)-(\mathscr{R}_0-1)^2/2}{\mathscr{R}_0}\approx \frac{(\mathscr{R}_0-1)^2}{2}$$

1.3.1 Datum van de epidemie-piek

De datum van de piek is moeilijker te bepalen. Uit de relatie (1.6)

$$\frac{d\mathbf{S}}{dt} = -a\frac{\mathbf{S}}{\mathbf{N}}(\mathbf{N} - \mathbf{S} - \mathbf{R}) = -a\frac{\mathbf{S}}{\mathbf{N}}\left(\mathbf{N} - \mathbf{S} + \frac{\mathbf{N}b}{a}\log[\mathbf{S}(t)/\mathbf{S}(0)]\right).$$

Aangezien S(t) strikt monotoon is, hebben we

$$\tau = \int_0^\tau dt = \int_{\mathcal{S}(0)}^{\mathcal{N}b/a} \frac{d\mathcal{S}}{-a\frac{\mathcal{S}}{\mathcal{N}}\left(\mathcal{N} - \mathcal{S} + \frac{\mathcal{N}b}{a}\log[\mathcal{S}/\mathcal{S}(0)]\right)}$$

Laat s = S/N. Dan

$$\tau = \frac{1}{a} \int_{\frac{b}{a}}^{1 - \frac{10}{N}} \frac{ds}{s \left(1 - s + \frac{b}{a} \log[s/(1 - I_0/N)]\right)}.$$
 (1.9)

Wij zullen het asymptotische gedrag van deze integraal bestuderen wanneer $N \rightarrow +\infty$ terwijl alle andere parameters vast staan, inclusief I₀.

Propositie 1.8. De datum τ van de epidemie-piek wordt, wanneer $N \to +\infty$, gegeven door de formule

$$\tau = \frac{1}{a-b} \left\{ \log \frac{N}{I_0} + \log \left[\left(1 - \frac{b}{a} \right) \log \frac{a}{b} \right] + \int_0^{\log \frac{a}{b}} \frac{-1 + e^{-u} + u}{u(1 - e^{-u} - \frac{b}{a}u)} du \right\} + o(1)$$

die kan worden herschreven als

$$\tau = \frac{1}{a-b} \left\{ \log \frac{\mathbf{N}}{\mathbf{I}_0} + f(\mathscr{R}_0) \right\} + o(1) \tag{1.10}$$

waar $\mathscr{R}_0 = a/b > 1$.

Bewijs. Laten we zeggen

$$\varepsilon = -\frac{b}{a}\log(1-I_0/N).$$

We hebben $\varepsilon > 0$. Dan is $\tau = \tau_1 + \tau_2$ met

$$\begin{aligned} \tau_1 &= \frac{1}{a} \int_{\frac{b}{a}}^{1-\frac{1}{N}} \left(\frac{1}{1+\varepsilon-s+\frac{b}{a}\log s} - \frac{1}{\varepsilon-(1-\frac{b}{a})\log s} \right) \frac{ds}{s}, \\ \tau_2 &= \frac{1}{a} \int_{\frac{b}{a}}^{1-\frac{1}{N}} \frac{ds}{s \left[\varepsilon-(1-\frac{b}{a})\log s\right]}. \end{aligned}$$

Door te herleiden tot dezelfde noemer vinden we,

$$\tau_1 = \frac{1}{a} \int_{\frac{b}{a}}^{1-\frac{1}{N}} \frac{-1+s-\log s}{\left[\varepsilon - \left(1-\frac{b}{a}\right)\log s\right] \left(1+\varepsilon - s + \frac{b}{a}\log s\right)} \frac{ds}{s}$$

We hebben nu

$$\varepsilon \sim \frac{b}{a} \frac{I_0}{N} \to 0$$

wanneer $N\to+\infty.$ Merk op dat de integraal die optreedt wanneer we formeel overgaan naar de limiet $N\to+\infty$

$$\int_{\frac{b}{a}}^{1} \frac{-1+s-\log s}{-(\log s)\left(1-s+\frac{b}{a}\log s\right)} \frac{ds}{s}$$

a priori een veralgemeende integraal is in s = 1. De geïntegreerde functie breidt zich echter uit door continuïteit omdat

$$\log s = s - 1 - \frac{(s-1)^2}{2} + o\left((s-1)^2\right)$$

in de buurt van s = 1, zodat

$$\frac{-1+s-\log s}{-(\log s)\left(1-s+\frac{b}{a}\log s\right)s} \quad \xrightarrow{s\to 1} \quad \frac{1}{2(1-b/a)}$$

In het bijzonder, deze integraal is convergent. Voor b/a < s < 1, laat

$$\begin{split} \psi(s) &= \frac{-1+s-\log s}{-(a-b)(\log s)\left(1-s+\frac{b}{a}\log s\right)s} ,\\ \psi_{\rm N}(s) &= \frac{1}{a} \; \frac{-1+s-\log s}{\left[\varepsilon-\left(1-\frac{b}{a}\right)\log s\right]\left(1+\varepsilon-s+\frac{b}{a}\log s\right)s} \end{split}$$

We hebben: $0 < \psi_N(s) < \psi(s)$ en $\psi_N(s) \rightarrow \psi(s)$ wanneer $N \rightarrow +\infty$. Aangezien

$$\int_{\frac{b}{a}}^{1} \psi(s) \, ds$$

een convergente integraal is, toont de gedomineerde convergentie-theorema [52, Stelling 10.1.34] aan dat

$$\int_{\frac{b}{a}}^{1} \psi_{\mathrm{N}}(s) \, ds \underset{\mathrm{N} \to +\infty}{\longrightarrow} \int_{\frac{b}{a}}^{1} \psi(s) \, ds.$$

Bovendien,

$$0 \leqslant \int_{1-\frac{I_0}{N}}^{1} \psi_N(s) \, ds \leqslant \int_{1-\frac{I_0}{N}}^{1} \psi(s) \, ds \underset{N \to +\infty}{\longrightarrow} 0.$$

Aldus

$$\tau_1 = \int_{\frac{b}{a}}^{1-\frac{1}{N}} \psi_N(s) \, ds = \int_{\frac{b}{a}}^{1} \psi_N(s) \, ds - \int_{1-\frac{1}{N}}^{1} \psi_N(s) \, ds \underset{N \to +\infty}{\longrightarrow} \int_{\frac{b}{a}}^{1} \psi(s) \, ds.$$

en

$$\tau_1 = \frac{1}{a-b} \int_{\frac{b}{a}}^{1} \frac{-1+s-\log s}{-(\log s)\left(1-s+\frac{b}{a}\log s\right)} \frac{ds}{s} + o(1), \quad \mathbf{N} \to +\infty.$$

Met de verandering van variabele $s = e^{-u}$, verkrijgen we

$$\tau_1 = \frac{1}{a-b} \int_0^{\log \frac{a}{b}} \frac{-1 + e^{-u} + u}{u\left(1 - e^{-u} - \frac{b}{a}u\right)} du + o(1).$$

Bovendien kan de integraal τ_2 expliciet worden berekend:

$$\begin{aligned} \tau_2 &= \frac{1}{a} \left[\frac{\log \left\{ \varepsilon - \left(1 - \frac{b}{a}\right) \log s \right\}}{-\left(1 - \frac{b}{a}\right)} \right]_{\frac{b}{a}}^{1 - \frac{I_0}{N}} \\ &= \frac{1}{a - b} \left[\log \left\{ \varepsilon - \left(1 - \frac{b}{a}\right) \log \frac{b}{a} \right\} - \log \left\{ -\log \left(1 - \frac{I_0}{N}\right) \right\} \right] \\ &= \frac{\log \frac{N}{I_0} + \log \left[\left(1 - \frac{b}{a}\right) \log \frac{a}{b} \right]}{a - b} + o(1). \end{aligned}$$

Als we de twee resultaten optellen, krijgen we de formule van de stelling. \Box

Figuur 1.4: De datum τ van de epidemie-piek van het S-I-R model, in dagen sinds het begin van de epidemie, als functie van log N volgens de exacte formule (1.9) [onon-derbroken lijnen] en volgens de benaderende formule (1.10) [kleine cirkels]. Parameterwaarden: I₀ = 1, b = 1/4 per dag, $\Re_0 = a/b \in \{1,5;2;3\}$.

Figuur 1.4 laat zien hoe goed deze formule de door het model gegeven datum τ van de epidemie-piek benadert. De gratis Software Scilab werd gebruikt voor de numerieke berekening van de integralen. Parameter *b* is zo gekozen dat de besmettelijke periode gemiddeld 1/b = 4 dagen duurt.

Opmerking 1.9. De formule (1.10) blijft ongewijzigd als we uitgaan van de begintoestand S(0) = N - i - r, I(0) = i en R(0) = r, met i > 0, $r \ge 0$, i + r < N en $a(1 - \frac{i+r}{N}) > b$. Inderdaad, laten we zeggen dat $\widehat{N} = N - r = N(1 - r/N)$, $\widehat{R}(t) = R(t) - r$ en $\widehat{a} = a\widehat{N}/N = a(1 - r/N)$. Dan

$$\frac{d\mathbf{S}}{dt} = -\widehat{a}\mathbf{S}\frac{\mathbf{I}}{\widehat{\mathbf{N}}}, \quad \frac{d\mathbf{I}}{dt} = \widehat{a}\mathbf{S}\frac{\mathbf{I}}{\widehat{\mathbf{N}}} - b\mathbf{I}, \quad \frac{d\mathbf{R}}{dt} = b\mathbf{I},$$

met $S(0) = \hat{N} - i$, I(0) = i en $\hat{R}(0) = 0$. We zijn terug bij het hierboven behandelde geval. Daarom

$$\tau = \frac{1}{\widehat{a} - b} \left\{ \log \frac{\widehat{\mathbf{N}}}{i} + f(\widehat{a}/b) \right\} + o(1), \quad \widehat{\mathbf{N}} \to +\infty$$

Maar aangezien $\widehat{N} \to +\infty$ equivalent is met $N \to +\infty,$ als $\log \widehat{N} = \log N +$

O(1/N) en als $\hat{a} = a + O(1/N)$, vallen we terug op

$$\tau = \frac{1}{a-b} \left\{ \log \frac{\mathbf{N}}{i} + f(a/b) \right\} + o(1), \quad \mathbf{N} \to +\infty.$$

1.3.2 Studie van de functie $f(\mathscr{R}_0)$

Figuur 1.5 laat zien hoe de functie $f(\mathscr{R}_0)$ van stelling 1.8 varieert als functie van \mathscr{R}_0 :

- de functie f(\$\mathcal{R}_0\$) lijkt toe te nemen; dit is niet duidelijk, zelfs niet bij het berekenen van de afgeleide;
- we hebben : $f(\mathscr{R}_0) = 0$ voor $\mathscr{R}_0 \approx 2, 1$.
- voor waarden van \mathscr{R}_0 die niet te dicht bij 1 liggen, zeg tussen 1,5 en 10 wat een redelijk bereik is voor veel infectieziekten, lijkt de term $f(\mathscr{R}_0)$ vrij klein vergeleken met de eerste term $\log(N/I_0)$ van de formule (1.10). Met $I_0 = 1$ en bijvoorbeeld een populatie van $N = 10^5$, hebben we $\log(N/I_0) \approx 11,5$ terwijl $|f(\mathscr{R}_0)|$ kleiner blijft dan 2.

Figuur 1.5: $f(\mathscr{R}_0)$ als functie van \mathscr{R}_0 [ononderbroken lijn] en de benadering (1.11) in de buurt van $\mathscr{R}_0 = 1$ [stippellijn].

Propositie 1.10.

$$f(\mathscr{R}_0) = \log\left[2(\mathscr{R}_0 - 1)^2\right] + o(1), \quad \mathscr{R}_0 \to 1^+.$$
 (1.11)

Bewijs. Wanneer $\mathscr{R}_0\to 1^+,\,\log\mathscr{R}_0=(\mathscr{R}_0-1)(1+o(1))$ en

$$\log\left[\left(1-\frac{1}{\mathscr{R}_0}\right)\log\mathscr{R}_0\right] = \log\left[(\mathscr{R}_0-1)^2\right] + o(1) = 2\log(\mathscr{R}_0-1) + o(1)$$

In de buurt van $u = 0^+$,

$$\frac{-1 + e^{-u} + u}{u(1 - e^{-u} - u/\mathscr{R}_0)} = \frac{u^2/2 + o(u^2)}{u(u - u^2/2 + o(u^2) - u/\mathscr{R}_0)}$$
$$= \frac{1 + o(1)}{2(1 - 1/\mathscr{R}_0) - u + o(u)}.$$

Echter

$$\begin{split} \int_{0}^{\log \mathscr{R}_{0}} \frac{du}{2(1-1/\mathscr{R}_{0})-u} &= \left[-\log\left\{ 2(1-1/\mathscr{R}_{0})-u\right\} \right]_{0}^{\log \mathscr{R}_{0}} \\ &= -\log \frac{2(1-1/\mathscr{R}_{0})-\log \mathscr{R}_{0}}{2(1-1/\mathscr{R}_{0})} \\ &= -\log \left[1-\frac{\log \mathscr{R}_{0}}{2(1-1/\mathscr{R}_{0})} \right] \\ &\xrightarrow{\mathcal{R}_{0} \to 1^{+}} -\log(1/2) = \log 2 \end{split}$$

Of

$$\zeta(u) = \frac{-1 + e^{-u} + u}{u(1 - e^{-u} - u/\Re_0)} - \frac{1}{2(1 - 1/\Re_0) - u}$$

Dan moet nog worden aangetoond dat

$$\int_0^{\log \mathscr{R}_0} \zeta(u) \, du \mathop{\longrightarrow}\limits_{\mathscr{R}_0 \to 1^+} 0.$$

Herleid tot dezelfde noemer, zien we dat

$$\zeta(u) = (1 - 1/\mathscr{R}_0) \frac{e^{-u} - 1 + u - u^2/2}{u(1 - e^{-u} - u/\mathscr{R}_0)(1 - 1/\mathscr{R}_0 - u/2)}$$

Volgens de Taylor-Lagrange formule, voor alle u > 0, bestaat $\theta \in]0; 1[$ zodanig dat

$$e^{-u} = 1 - u + \frac{u^2}{2} - \frac{u^3}{6}e^{-\theta u}.$$

Dus voor alle u > 0,

$$\begin{vmatrix} e^{-u} - 1 + u - \frac{u^2}{2} \end{vmatrix} \leq \frac{u^3}{6},$$

$$1 - e^{-u} - u/\mathscr{R}_0 = u - \frac{u^2}{2} + \frac{u^3}{6} e^{-\theta u} - u/\mathscr{R}_0$$

$$> u - \frac{u^2}{2} - u/\mathscr{R}_0 = u(1 - 1/\mathscr{R}_0 - u/2).$$

Merk op dat voor $0 < u < \log \mathcal{R}_0$,

$$1 - 1/\mathscr{R}_0 - u/2 > 1 - 1/\mathscr{R}_0 - (\log \mathscr{R}_0)/2 \underset{\mathscr{R}_0 \to 1^+}{\sim} (\mathscr{R}_0 - 1)/2 > 0.$$

Voor \mathscr{R}_0 dicht bij 1, hebben we $1 - 1/\mathscr{R}_0 - (\log \mathscr{R}_0)/2 > 0$. Zo,

$$\begin{split} \left| \int_{0}^{\log \mathscr{R}_{0}} \zeta(u) \, du \right| &\leq \frac{1 - 1/\mathscr{R}_{0}}{[1 - 1/\mathscr{R}_{0} - (\log \mathscr{R}_{0})/2]^{2}} \int_{0}^{\log \mathscr{R}_{0}} \frac{u}{6} \, du \\ &= \frac{1 - 1/\mathscr{R}_{0}}{[1 - 1/\mathscr{R}_{0} - (\log \mathscr{R}_{0})/2]^{2}} \frac{(\log \mathscr{R}_{0})^{2}}{12} \\ & \underset{\mathscr{R}_{0} \to 1^{+}}{\sim} \frac{\mathscr{R}_{0} - 1}{3} \underset{\mathscr{R}_{0} \to 1^{+}}{\rightarrow} 0. \end{split}$$

1.3.3 Opmerking

De datum van de piek is geen monotoon afnemende functie van de effectieve contactfrequentie *a*, zoals men a priori zou kunnen denken. Figuur 1.6 illustreert dit met enkele numerieke voorbeelden.

Om deze figuur te begrijpen zonder echt rigoureus te zijn, neem aan dat N groot is en \mathscr{R}_0 dicht bij 1 ligt, maar met N $(\mathscr{R}_0 - 1)^2$ niet te klein. Door de benaderingsformules (1.10) en (1.11) te combineren, vinden we

$$\tau \approx \frac{\log\left[\frac{N}{I_0}2(a/b-1)^2\right]}{a-b}$$

Dus

$$\frac{\partial \tau}{\partial a} \approx \frac{2 - \log \left[\frac{N}{I_0} 2(a/b - 1)^2\right]}{(a-b)^2}.$$

Merk op dat $\frac{\partial \tau}{\partial a} \approx 0$ als

$$\frac{a}{b} \approx 1 + \mathrm{e}\sqrt{\frac{\mathrm{I}_0}{2\mathrm{N}}},$$

Figuur 1.6: De datum τ van de epidemie-piek volgens de exacte formule (1.9) als functie van de effectieve contactfrequentie *a* voor $a > b/(1 - \frac{I_0}{N})$ als $I_0 = 1$ en $N \in \{100; 1000; 10000\}$. De tijdseenheid is zo gekozen dat b = 1.

waarbij e de basis is van de neperiaanse logaritmen. Met deze waarde van a, noteren we het a^* , de overeenkomstige waarde van het maximum van τ is

$$\tau_{\max} \approx \frac{2}{a^* - b} = \frac{2}{be} \sqrt{\frac{2N}{I_0}}.$$

De datum van de epidemie-piek is dus niet altijd een afnemende functie van de contactfrequentie, maar dit wordt alleen waargenomen voor waarden van \mathscr{R}_0 die dicht bij 1 liggen.

1.4 Benadering wanneer de reproductiviteit dicht bij 1 ligt

Laten we nog eens kijken naar het geval waarin $\Re_0 = a/b \approx 1$ met $\Re_0 > 1$. Veronderstel dat de begin-voorwaarde I_0/N klein is. Volgens de benadering (1.7) is de uiteindelijke omvang van de epidemie R_{∞}/N ook klein. Aangezien functie R(t) stijgend is, betekent dit dat de functie R(t)/N klein blijft voor alle $t \ge 0$. Vergelijking (1.6) toont aan dat $S(t) = S(0) e^{-aR(t)/(Nb)}$. Daarom

$$\frac{d\mathbf{R}}{dt} = b\mathbf{I} = b(\mathbf{N} - \mathbf{S} - \mathbf{R}) = b\left[\mathbf{N} - \mathbf{S}(0)\,\mathbf{e}^{-a\mathbf{R}/(\mathbf{N}b)} - \mathbf{R}\right].$$

Een afgeknotte beperkte expansie tot orde 2 van de exponentiaal $e^{-x} = 1 - x + x^2/2 + o(x^2)$ leidt tot

$$\frac{d\mathbf{R}}{dt} \approx b \left[\mathbf{N} - \mathbf{S}(0) \left(1 - \frac{a\mathbf{R}}{\mathbf{N}b} + \frac{a^2\mathbf{R}^2}{2\mathbf{N}^2b^2} \right) - \mathbf{R} \right].$$

Aangezien $S(0) = N - I_0$,

$$\frac{d\mathbf{R}}{dt} \approx b\,\mathbf{I}_0 + \left(\frac{a\,\mathbf{S}(0)}{N} - b\right)\mathbf{R} - \frac{\mathbf{S}(0)\,a^2}{2\,b\,N^2}\mathbf{R}^2.$$
(1.12)

Herinner u dat $ch(\cdot)$ en $th(\cdot)$ de hyperbolische cosinus en de hyperbolische tangens betekenen.

Hulpstelling 1.11. Stel $\alpha < 0$, $\beta > 0$ en $\gamma > 0$ en

$$\Delta = \beta^2 - 4 \alpha \gamma, \quad \tau = \frac{2}{\sqrt{\Delta}} \operatorname{Arg} \operatorname{th} \left(\frac{\beta}{\sqrt{\Delta}} \right).$$

Dan is de oplossing van de Riccati-vergelijking

$$\frac{d\mathbf{R}}{dt} = \alpha \,\mathbf{R}^2 + \beta \,\mathbf{R} + \gamma$$

met de begin-voorwaarde R(0) = 0

$$\mathbf{R}(t) = \frac{-\beta - \sqrt{\Delta} \operatorname{th}\left(\sqrt{\Delta}(t-\tau)/2\right)}{2\,\alpha},$$

zodat

$$\frac{d\mathbf{R}}{dt} = \frac{-\Delta/(4\,\alpha)}{\mathrm{ch}^2\left(\sqrt{\Delta}(t-\tau)/2\right)}.$$

Bewijs. De aannames impliceren $\Delta > 0$. Laten we stellen

$$\mathbf{R}_{\pm} = rac{-eta \pm \sqrt{\Delta}}{2 \, lpha}, \quad \mathbf{R}(t) = \mathbf{R}_{-} + r(t).$$

Dan

$$\frac{dr}{dt} = \frac{dR}{dt} = \alpha \left(R_{-} + r\right)^{2} + \beta \left(R_{-} + r\right) + \gamma$$
$$= \alpha R_{-}^{2} + \beta R_{-} + \gamma + (\beta + 2\alpha R_{-})r + \alpha r^{2}$$
$$= (\beta + 2\alpha R_{-})r + \alpha r^{2} = -\sqrt{\Delta} r + \alpha r^{2}.$$

Veronderstel $\delta = \sqrt{\Delta}$. Laat $\rho = 1/r$ gelden. Dan

$$\frac{d\rho}{dt} = -\frac{1}{r^2}\frac{dr}{dt} = \frac{\delta}{r} - \alpha = \delta \ \rho - \alpha.$$

Dit leidt tot

$$\rho(t) = \rho(0) e^{\delta t} + \frac{\alpha}{\delta} \left(1 - e^{\delta t} \right).$$

Terugkerend naar variabelen r(t) en R(t) en rekening houdend met R(0) = 0, verkrijgen we

$$\mathbf{R}(t) = \mathbf{R}_{-} + \frac{1}{-\frac{\mathbf{e}^{\delta t}}{\mathbf{R}_{-}} + \frac{\alpha}{\delta} \left(1 - \mathbf{e}^{\delta t}\right)}$$

Als we R_ vervangen door de uitdrukking ervan, krijgen we

$$\mathbf{R}(t) = \frac{-\beta - \delta}{2\alpha} + \frac{\delta/\alpha}{1 + \frac{\delta - \beta}{\delta + \beta} e^{\delta t}}$$

Een formule voor hyperbolische goniometrie geeft echter [52, sectie 8.5.3]

$$\tau = \frac{2}{\delta} \operatorname{Arg} \operatorname{th}\left(\frac{\beta}{\delta}\right) = \frac{1}{\delta} \log\left(\frac{1+\beta/\delta}{1-\beta/\delta}\right) = \frac{1}{\delta} \log\left(\frac{\delta+\beta}{\delta-\beta}\right).$$

Dus

$$\mathbf{R}(t) = \frac{-\beta - \delta}{2\alpha} + \frac{\delta/\alpha}{1 + e^{\delta(t - \tau)}} = -\frac{\beta}{2\alpha} - \frac{\delta}{2\alpha} \left(1 - \frac{2}{1 + e^{\delta(t - \tau)}}\right)$$
$$= -\frac{\beta}{2\alpha} - \frac{\delta}{2\alpha} \frac{e^{\delta(t - \tau)} - 1}{e^{\delta(t - \tau)} + 1} = -\frac{\beta}{2\alpha} - \frac{\delta}{2\alpha} \operatorname{th}\left[\delta(t - \tau)/2\right].$$

De afgeleide van R(t) is onmiddellijk af te leiden.

Laten we terugkeren naar de benaderingsvergelijking (1.12). We hebben

$$\alpha = -\frac{S(0) a^2}{2 b N^2} < 0, \quad \beta = \frac{a S(0)}{N} - b > 0, \quad \gamma = b I_0 > 0.$$

Dus

$$\mathbf{I}(t) = \frac{1}{b} \frac{d\mathbf{R}}{dt} \approx \frac{\mathbf{N}}{2} \frac{[\mathbf{N}/\mathbf{S}(0)](\Delta/a^2)}{\mathrm{ch}^2 \left(\sqrt{\Delta} (t-\tau)/2\right)}$$

met

$$\Delta = \left(\frac{a\,\mathbf{S}(0)}{N} - b\right)^2 + 2\,a^2\,\frac{\mathbf{S}(0)\,\mathbf{I}(0)}{N^2}, \quad \tau = \frac{2}{\sqrt{\Delta}}\,\operatorname{Arg}\,\operatorname{th}\left(\frac{\frac{a\,\mathbf{S}(0)}{N} - b}{\sqrt{\Delta}}\right).$$

Merk op dat deze benadering van I(t) een symmetrische bel-kromme is met een maximum bij $t = \tau$, hetgeen a posteriori het gebruik van τ in lemma 1.11 rechtvaardigt. Kermack en McKendrick verkregen deze benadering in 1927 [3, hoofdstuk 18].

Veronderstel meer precies $\mathscr{R}_0 = a/b \approx 1$, $\mathscr{R}_0 > 1$ en $I_0/N \ll (\mathscr{R}_0 - 1)^2$. Omdat we ook $I_0/N \ll \mathscr{R}_0 - 1$ hebben, vinden we

$$\begin{split} &\alpha = -\frac{a^2}{2bN} (1 - I_0/N) \approx -\frac{a}{2N}, \\ &\beta = (a - b) \left(1 - \frac{I_0/N}{1 - b/a} \right) \approx a - b, \\ &\Delta = [a(1 - I_0/N) - b]^2 + 2a^2 (I_0/N) (1 - I_0/N) \\ &\approx (a - b)^2 + 2ab (I_0/N) \approx (a - b)^2. \end{split}$$

Aldus

$$I(t) = \frac{1}{b} \frac{dR}{dt} \approx \frac{N}{2} \frac{(a/b-1)^2}{ch^2[(a-b)(t-\tau)/2]}.$$
 (1.13)

We vinden, net als in paragraaf 1.3, dat $I(\tau)/N \approx (\mathscr{R}_0 - 1)^2/2$. Verder is

$$\operatorname{th}\left(\sqrt{\Delta}\,\tau/2\right) = \frac{\beta}{\sqrt{\Delta}} \approx \frac{1 - \frac{I_0/N}{1 - b/a}}{1 + ab\frac{I_0/N}{(a-b)^2}} \approx 1 - ab\frac{I_0/N}{(a-b)^2} \approx 1 - \frac{I_0/N}{(a/b-1)^2}.$$

We leiden af dat de hyperbolische tangens dicht bij 1 ligt, zodat

th
$$\left(\sqrt{\Delta}\,\tau/2\right) \approx 1 - 2\,\mathrm{e}^{-\sqrt{\Delta}\,\tau}.$$

Aldus

$$au \approx rac{1}{a-b} \log\left(rac{2\mathbf{N}}{\mathbf{I}_0}(a/b-1)^2
ight).$$

Dit is dezelfde uitdrukking als in paragraaf 1.3.3, zoals het hoort.

Hoofdstuk 2

S-E-I-R Modellen

Wij bestuderen een epidemie gemodelleerd door een systeem van differentiaal vergelijkingen van het type S-E-I-R. Wanneer de populatie N groot is, vermoeden wij dat de epidemie-piek plaatsvindt op tijdstip τ met $\tau \sim (\log N)/\lambda_+$, waarbij λ_+ de grootste eigenwaarde is van het gelineariseerde systeem.

2.1 Vergelijkingen

Het S-E-I-R model bevat een latente fase voordat besmette personen besmettelijk worden. Het aantal personen in de latente fase wordt genoteerd als E (E voor "blootgesteld"). Gegeven wat werd gezien in hoofdstuk 1, vertaalt dit zich in

$$\frac{d\mathbf{S}}{dt} = -a\mathbf{S}\frac{\mathbf{I}}{\mathbf{N}},\tag{2.1}$$

$$\frac{d\mathbf{E}}{dt} = a\,\mathbf{S}\,\frac{\mathbf{I}}{\mathbf{N}} - c\,\mathbf{E},\tag{2.2}$$

$$\frac{d\mathbf{I}}{dt} = c\mathbf{E} - b\mathbf{I},\tag{2.3}$$

$$\frac{d\mathbf{R}}{dt} = b\,\mathbf{I},\tag{2.4}$$

waarbij parameters a en b hetzelfde zijn als voor het S-I-R-model in hoofdstuk 1 en parameter c de snelheid is waarmee degenen die in de latente fase geïnfecteerd zijn, besmettelijk worden (c > 0). De beginvoorwaarden zijn

$$S(0) = N - n_E - n_I$$
, $E(0) = n_E \ge 0$, $I(0) = n_I \ge 0$, $R(0) = 0$, (2.5)

met $n_{\rm E} \ge 0$, $n_{\rm I} \ge 0$ en $0 < n_{\rm E} + n_{\rm I} < N$.

Aan het begin van een epidemie zal een pas geïnfecteerde persoon gemiddeld nog \mathscr{R}_0 secundaire gevallen besmetten voordat hij in compartiment R komt, met

$$\mathscr{R}_0 = \frac{a}{b}$$

ondanks de latentiefase. Het aanvankelijke aantal besmette personen $n_{\rm E} + n_{\rm I}$ is gewoonlijk zeer klein in vergelijking met de totale bevolking N. Aan het begin van een epidemie hebben we dus $S(t) \approx N$, zodat

$$\frac{d\mathbf{E}}{dt} \approx a\mathbf{I} - c\mathbf{E}, \quad \frac{d\mathbf{I}}{dt} \approx c\mathbf{E} - b\mathbf{I}.$$

De functies E(t) en I(t) groeien of dalen volgens $e^{\lambda_+ t}$, waarbij λ_+ de grootste eigenwaarde is van de matrix

$$\mathbf{M} = \left(\begin{array}{cc} -c & a \\ c & -b \end{array}\right).$$

Propositie 2.1. *Het stelsel* (2.1)-(2.4) *heeft een unieke oplossing gedefinieerd* voor alle t > 0. Bovendien is S(t) > 0, E(t) > 0, I(t) > 0 en R(t) > 0 voor alle t > 0.

Bewijs. Net als voor het S-I-R model verzekert de stelling van Cauchy-Lipschitz het bestaan en de uniciteit van een oplossing van het systeem (2.1)-(2.4) met beginvoorwaarden (2.5) op een maximaal interval [0; T]. We hebben ook

$$\mathbf{S}(t) = \mathbf{S}(0) \exp\left(-\frac{a}{N} \int_0^t \mathbf{I}(u) \, du\right) > 0$$

voor alle 0 < t < T. Laat

$$\mathbf{X}(t) = \left(\begin{array}{c} \mathbf{E}(t) \\ \mathbf{I}(t) \end{array}\right), \quad \mathbf{F}(t) = \left(\begin{array}{c} -c & a\mathbf{S}(t)/\mathbf{N} \\ c & -b \end{array}\right).$$

We hebben

$$\frac{d\mathbf{X}}{dt} = \mathbf{F}(t) \, \mathbf{X}(t).$$

In het volgende zullen de ongelijkheden $\leq en \geq$ tussen vectoren of matrices betekenen dat er ongelijkheid is voor alle respectieve componenten. We hebben $X(0) \geq 0$ en $X(0) \neq 0$ sinds $n_E + n_I > 0$. Gezien de niet-diagonale termen van de matrix F(t) strikt positief zijn, geldt stelling 2.8 van de hieronder volgende appendix: voor alle $t \in [0; T[, E(t) > 0 \text{ en } I(t) > 0$. Zoals

$$\mathbf{R}(t) = b \int_0^t \mathbf{I}(u) \, du$$

hebben we ook R(t) > 0 voor alle $t \in [0; T[$. Sinds

$$\frac{d}{dt}(\mathbf{S} + \mathbf{E} + \mathbf{I} + \mathbf{R}) = \mathbf{0},$$

hebben we

$$S(t) + E(t) + I(t) + R(t) = S(0) + E(0) + I(0) + R(0) = N$$
(2.6)

en

 $0 < S(t) < N, \quad 0 < E(t) < N, \quad 0 < I(t) < N, \quad 0 < R(t) < N$

voor alle 0 < t < T. Hieruit volgt zoals in het bewijs van stelling 1.2 dat $T = +\infty$: het systeem heeft een unieke oplossing gedefinieerd voor alle t > 0. \Box

Propositie 2.2. De functie S(t) is strikt afnemend en convergeert naar een limiet S_{∞} die hetzelfde is als in stelling 1.3. De functie R(t) is strikt stijgend en convergeert naar een limiet R_{∞} met $S_{\infty} + R_{\infty} = N$. Bovendien, $E(t) \rightarrow 0$ en $I(t) \rightarrow 0$ wanneer $t \rightarrow +\infty$.

Bewijs. Voor het S-I-R model hebben we

$$\frac{d\mathbf{S}}{dt} = -a\,\mathbf{S}\,\frac{\mathbf{I}}{\mathbf{N}} < 0.$$

De functie S(t) is dus strikt afnemend en geminimaliseerd door 0. Het convergeert naar een limiet S_{∞} als $t \to +\infty$. Op dezelfde manier,

$$\frac{d\mathbf{R}}{dt} = b\mathbf{I} > 0$$

De functie R(t) is dus strikt stijgend en neemt toe met N. Het convergeert naar een limiet R_{∞} wanneer $t \to +\infty$. We hebben

$$\frac{d}{dt}(\mathbf{I}+\mathbf{R})=c\,\mathbf{E}>0.$$

De functie I(t) + R(t) is dus stijgend en neemt toe met N. Het convergeert naar een limiet. Daarom convergeert I(t) ook naar een limiet I_{∞} . Maar

$$b\int_0^t \mathbf{I}(u)\,du = \mathbf{R}(t) \leqslant \mathbf{N}$$

Daarom $I_{\infty} = 0$. De functie E(t) = N - S(t) - I(t) - R(t) convergeert ook naar een limiet E_{∞} . Zoals

$$c\int_0^t \mathbf{E}(u)\,du = \mathbf{I}(t) + \mathbf{R}(t) - \mathbf{I}(0) \leqslant \mathbf{N},$$

hebben we $E_{\infty} = 0$. Met vergelijking (2.6) verkrijgen we in de limiet

$$S_{\infty} + R_{\infty} = N$$

Volgens vergelijkingen (2.1) en (2.4),

$$\frac{d\mathbf{R}}{dt} = -\frac{b\mathbf{N}}{a\mathbf{S}}\frac{d\mathbf{S}}{dt}.$$

Wat het S-I-R model betreft, hebben we

$$\mathbf{R}(t) = -\frac{b\mathbf{N}}{a}\log\frac{\mathbf{S}(t)}{\mathbf{S}(0)}.$$
(2.7)

De uiteindelijke grootte van de epidemie R_{∞} wordt dus nog steeds gegeven door stelling 1.3.

2.2 Epidemische piek

Laat ons de definitie van de epidemie-piek, die wij zullen hanteren, verduidelijken. We hebben

$$\frac{d}{dt}(\mathbf{E}+\mathbf{I}) = (a\mathbf{S}/\mathbf{N}-b)\mathbf{I}.$$
(2.8)

Stel dat

$$S(0)/N = 1 - (n_E + n_I)/N > b/a.$$

Indien a > b, is deze ongelijkheid waar zodra N groot genoeg is. We hebben I(t) > 0 voor alle t > 0. De functie S(t) is strikt afnemend en neemt af van S(0) > Nb/a tot S_{∞} op het interval $[0; +\infty[$, met $S_{\infty} < Nb/a$ door stelling 1.3. Er is dus een unieke $\tau > 0$ zodanig dat

$$\mathbf{S}(\tau) = \mathbf{N}b/a.$$

Volgens vergelijking (2.8) is de functie E(t) + I(t) strikt toenemend op het interval $[0; \tau]$ en vervolgens strikt afnemend op het interval $[\tau; +\infty]$. We noemen τ de epidemische piek. Het komt meestal niet overeen met het maximum van I(t) of E(t).

Volgens vergelijking (2.7), hebben we ook

$$\mathbf{E}(\tau) + \mathbf{I}(\tau) = \mathbf{N} - \mathbf{S}(\tau) - \mathbf{R}(\tau) = \mathbf{N} - \mathbf{S}(\tau) + \frac{b\mathbf{N}}{a}\log\frac{\mathbf{S}(\tau)}{\mathbf{S}(0)}.$$

Sinds $S(\tau) = Nb/a$, hebben we

$$\mathbf{E}(\tau) + \mathbf{I}(\tau) = \mathbf{N}\left(1 - \frac{b}{a} + \frac{b}{a}\log\frac{\mathbf{N}b}{a\,\mathbf{S}(0)}\right),\tag{2.9}$$

die de hoogte van de epidemische piek geeft.

Hulpstelling 2.3. Laat M een vierkante matrix zijn van orde 2 met reële coëfficiënten. Veronderstel dat de twee eigenwaarden λ_1 en λ_2 van deze matrix verschillend zijn. Dan

$$\exp(\mathbf{M}) = \frac{\lambda_1 e^{\lambda_2} - \lambda_2 e^{\lambda_1}}{\lambda_1 - \lambda_2} \mathscr{I} + \frac{e^{\lambda_1} - e^{\lambda_2}}{\lambda_1 - \lambda_2} \mathbf{M},$$

waarin I de eenheidsmatrix van orde 2 is.

Bewijs. Laten we stellen dat

$$\mathbf{D} = \left(\begin{array}{cc} \lambda_1 & 0 \\ 0 & \lambda_2 \end{array} \right).$$

Volgens de Cayley-Hamilton stelling [52, Stelling 3.2.7], kan de matrix D^2 en dus ook de hogere machten van D geschreven worden als een lineaire combinatie van de identiteitsmatrix \mathscr{I} en de matrix D. Hetzelfde geldt voor $\exp(D)$. Laten we de getallen *x* en *y* zo zoeken dat $\exp(D) = x\mathscr{I} + yD$. Dit leidt tot het systeem

$$e^{\lambda_1} = x + y\lambda_1, \quad e^{\lambda_2} = x + y\lambda_2,$$

waarvan de oplossing is

$$x = rac{\lambda_1 e^{\lambda_2} - \lambda_2 e^{\lambda_1}}{\lambda_1 - \lambda_2}, \quad y = rac{e^{\lambda_1} - e^{\lambda_2}}{\lambda_1 - \lambda_2}.$$

Er is een inverteerbare matrix P zodanig dat $M = P^{-1}DP$. Daarom

$$\exp(\mathbf{M}) = \sum_{n=0}^{+\infty} \frac{\mathbf{M}^n}{n!} = \mathbf{P}^{-1} \exp(\mathbf{D})\mathbf{P} = \mathbf{P}^{-1} (x \mathscr{I} + y\mathbf{D})\mathbf{P} = x \mathscr{I} + y\mathbf{M}. \quad \Box$$

De volgende stelling geeft een ondergrens voor de datum van de epidemiepiek.

Propositie 2.4. *Er bestaat een constante* $K \in \mathbb{R}$ *, die afhangt van a, b, c, n*_E *en n*_I (*maar niet van* N)*, zodanig dat*

$$\tau \geqslant rac{\log N}{\lambda_+} + K.$$

Bewijs. Als $S/N \leq 1$, hebben we

$$\frac{d\mathbf{E}}{dt} \leqslant -c\,\mathbf{E} + a\,\mathbf{I}, \quad \frac{d\mathbf{I}}{dt} = c\,\mathbf{E} - b\,\mathbf{I}.$$

Laat

$$\mathbf{X}(t) = \begin{pmatrix} \mathbf{E}(t) \\ \mathbf{I}(t) \end{pmatrix}, \quad \mathbf{M} = \begin{pmatrix} -c & a \\ c & -b \end{pmatrix}, \quad \mathbf{Y}(t) = \mathbf{e}^{t\mathbf{M}} \begin{pmatrix} n_{\mathbf{E}} \\ n_{\mathbf{I}} \end{pmatrix}.$$

Bedenk dat de ongelijkheden \leq en \geq tussen vectoren of matrices betekenen dat er ongelijkheid is voor alle respectieve componenten. We hebben

$$\frac{d\mathbf{X}}{dt} \leqslant \mathbf{M}\mathbf{X}(t), \quad \frac{d\mathbf{Y}}{dt} = \mathbf{M}\mathbf{Y}(t), \quad \mathbf{X}(0) = \mathbf{Y}(0).$$

De niet-diagonale termen van de matrix M zijn positief. Door corollarium 2.6 van de appendix geldt $X(t) \leq Y(t)$ voor alle $t \geq 0$, d.w.z.

$$\left(\begin{array}{c} \mathbf{E}(t)\\ \mathbf{I}(t) \end{array}\right) \leqslant \mathbf{e}^{t\mathbf{M}} \left(\begin{array}{c} n_{\mathbf{E}}\\ n_{\mathbf{I}} \end{array}\right).$$

Door lemma 2.3 wordt de matrix-exponentiaal exp(t M) expliciet berekend met de eigenwaarden van de matrix M, en zijn gegeven door

$$\lambda_{\pm} = \frac{-b - c \pm \sqrt{(b - c)^2 + 4ac}}{2}$$

We vinden

$$\mathbf{e}^{t\mathbf{M}} = \begin{pmatrix} \frac{\mathbf{e}^{\lambda+t} + \mathbf{e}^{\lambda-t}}{2} + \frac{b-c}{\sqrt{(b-c)^2 + 4ac}} \frac{\mathbf{e}^{\lambda+t} - \mathbf{e}^{\lambda-t}}{2} & \frac{a(\mathbf{e}^{\lambda+t} - \mathbf{e}^{\lambda-t})}{\sqrt{(b-c)^2 + 4ac}} \\ \frac{c(\mathbf{e}^{\lambda+t} - \mathbf{e}^{\lambda-t})}{\sqrt{(b-c)^2 + 4ac}} & \frac{\mathbf{e}^{\lambda+t} + \mathbf{e}^{\lambda-t}}{2} + \frac{c-b}{\sqrt{(b-c)^2 + 4ac}} \frac{\mathbf{e}^{\lambda+t} - \mathbf{e}^{\lambda-t}}{2} \end{pmatrix}$$

voor alle $t \ge 0$. We leiden af

$$\begin{split} \mathrm{E}(\tau) + \mathrm{I}(\tau) &\leq (1 - 1) \, \mathrm{e}^{\tau \mathrm{M}} \left(\begin{array}{c} n_{\mathrm{E}} \\ n_{\mathrm{I}} \end{array} \right) \\ &\leq \left(\frac{\mathrm{e}^{\lambda_{+}\tau} + \mathrm{e}^{\lambda_{-}\tau}}{2} + \frac{b + c}{\sqrt{(b - c)^{2} + 4ac}} \frac{\mathrm{e}^{\lambda_{+}\tau} - \mathrm{e}^{\lambda_{-}\tau}}{2} \right) n_{\mathrm{E}} \\ &+ \left(\frac{\mathrm{e}^{\lambda_{+}\tau} + \mathrm{e}^{\lambda_{-}\tau}}{2} + \frac{2a + c - b}{\sqrt{(b - c)^{2} + 4ac}} \frac{\mathrm{e}^{\lambda_{+}\tau} - \mathrm{e}^{\lambda_{-}\tau}}{2} \right) n_{\mathrm{I}}. \end{split}$$

Sinds $\lambda_{-} < \lambda_{+}$ bestaat er een constante k > 0, die afhangt van $a, b, c, n_{\rm E}$ en $n_{\rm I}$ (maar niet van N), zodanig dat

$$\mathrm{E}(\tau) + \mathrm{I}(\tau) \leqslant k \,\mathrm{e}^{\lambda_+ \tau}.$$

Maar de vergelijking (2.9) voor de hoogte van de epidemie-piek met S(0)/N < 1 laat zien dat

$$N\left(1-\frac{b}{a}+\frac{b}{a}\log(b/a)\right) \leqslant E(\tau) + I(\tau) \leqslant k e^{\lambda_{+}\tau}$$

De ondergrens van de stelling volgt.

Deze ondergrens suggereert dat

$$au \sim rac{\log N}{\lambda_+}, \quad N o +\infty.$$

Als voorbeeld werden c = 1/3 per dag, b = 1/4 per dag, $n_{\rm E} = 1$, $n_{\rm I} = 0$, gekozen en drie waarden van de effectieve contactfrequentie *a* zodat $a/b \in \{1,5; 2; 3\}$. Na een besmettelijke periode van gemiddeld 4 dagen volgt dus een latente fase van gemiddeld 3 dagen. Voor de totale populatie N werden verschillende waarden genomen tussen 10^2 en 10^8 . Het S-E-I-R systeem werd opgelost met de gratis software Scilab en de piek τ die overeenkomt met het maximum van E + I werd gevonden. Figuur 2.1 laat zien hoe τ varieert als functie van log N. Figuur $(\log N)/\lambda_+$ is ook uitgezet. De hellingen lijken samen te vallen, wat het geval zou zijn als het vermoeden waar was. De figuur suggereert ook dat de volgende term in de asymptotische expansie van τ nog steeds een constante is, die negatief is als $\Re_0 = a/b$ dicht bij 1 ligt en positief wordt als \Re_0 toeneemt. Het lijkt moeilijk om deze constante te bepalen aan de hand van de parameters van het model.

2.3 Aanhangsel: Coöperatieve lineaire differentiële systemen

De ongelijkheden \leq en \geq tussen vectoren betekenen dat er ongelijkheid is voor alle respectieve componenten.

Propositie 2.5. Laat $m \ge 2$ een geheel getal zijn, J een interval van \mathbb{R} , M : $J \to \mathbb{R}^{m \times m}$ een continue functie zodat

$$\forall i \neq j, \ \forall t \in \mathbf{J}, \quad \mathbf{M}_{i,j}(t) \geq 0,$$

Figuur 2.1: De datum τ van de epidemie-piek in het S-E-I-R model als functie van log N uit de numerieke simulaties [ononderbroken lijnen] en $(\log N)/\lambda_+$ [kleine cirkels].

en $G: J \rightarrow \mathbb{R}^m$ een continue functie zodat

$$\forall t \in \mathbf{J}, \quad \mathbf{G}(t) \ge 0.$$

Laten $t_0 \in J$ en $X_0 \in \mathbb{R}^m$ zodanig zijn dat $X_0 \ge 0$. Laat $X : J \to \mathbb{R}^m$ de oplossing zijn van het lineaire stelsel van differentiaal vergelijkingen

$$\forall t \in \mathbf{J}, \quad \frac{d\mathbf{X}}{dt} = \mathbf{M}(t)\mathbf{X} + \mathbf{G}(t)$$

met $X(t_0) = X_0$. *Dan* $X(t) \ge 0$ *voor alle* $t \in J$ *met* $t \ge t_0$.

Bewijs. Herinner je dat de oplossing $X(t) = (X_1(t), ..., X_m(t))$ goed gedefinieerd is voor alle $t \in J$ [16, Stelling 2.3]. Veronderstel eerst dat alle componenten van de begin-voorwaarde X_0 strikt positief zijn. De componenten van oplossing X(t) blijven allemaal strikt positief althans over een klein tijdsinterval zoals t_0 bevat. Laten we redeneren vanuit het absurde. Stel dat de verzameling

$$\mathscr{E} = \{ t \in \mathbf{J} \mid t > t_0, \exists i, 1 \leq i \leq m, \mathbf{X}_i(t) = 0 \}$$

niet leeg is. Laat $t_+ = \inf \mathscr{E}$ zijn. Dan $t_+ > t_0$ en er bestaat een *i* zodanig dat $X_i(t_+) = 0$. Bovendien, voor $1 \le j \le m$ en $t \in]t_0; t_+[, X_j(t) > 0$. Dus voor

$$t \in [t_0; t_+],$$

$$\frac{d\mathbf{X}_i}{dt} = \mathbf{M}_{i,i}(t)\mathbf{X}_i(t) + \sum_{j \neq i} \mathbf{M}_{i,j}(t)\mathbf{X}_j(t) + \mathbf{G}_i(t) \ge \mathbf{M}_{i,i}(t)\mathbf{X}_i(t),$$

$$\frac{d}{dt} \left[\exp\left(-\int_{t_0}^t \mathbf{M}_{i,i}(s)\,ds\right)\mathbf{X}_i(t) \right] \ge 0,$$

$$\exp\left(-\int_{t_0}^t \mathbf{M}_{i,i}(s)\,ds\right)\mathbf{X}_i(t) \ge \mathbf{X}_i(t_0).$$

Door *t* te laten neigen naar t_+ , verkrijgen we $0 \ge X_i(t_0)$, wat onmogelijk is omdat $X_i(t_0) > 0$. Daarom $X_j(t) > 0$ voor $1 \le j \le m$ en voor alle $t \in J$ zo dat $t > t_0$.

Als we alleen $X_0 \ge 0$ hebben, dan beschouwen we bijvoorbeeld de rij oplossingen $X^{(n)}(t)$ van hetzelfde stelsel van differentiaal vergelijkingen maar met de begin-voorwaarde $X_i^{(n)}(t_0) = X_{0,i} + 1/n$ voor $1 \le i \le m$. Uit het bovenstaande volgt $X_i^{(n)}(t) > 0$ voor alle *i* en alle $t \in J \cap]t_0$; $+\infty$ [. De continuïteit van een oplossing ten opzichte van de begin-voorwaarde [16, Stelling 3.39] toont aan dat voor alle *i* en alle $t \in J \cap]t_0$; $+\infty$ [

$$\mathbf{X}_{i}(t) = \lim_{n \to +\infty} \mathbf{X}_{i}^{(n)}(t) \ge 0.$$

Corollarium 2.6. Laat $m \ge 2$ een geheel getal zijn, J een interval van \mathbb{R} , M : J $\rightarrow \mathbb{R}^{m \times m}$ een continue functie zodat

$$\forall i \neq j, \forall t \in \mathbf{J}, \quad \mathbf{M}_{i,i}(t) \geq 0,$$

en $H: J \to \mathbb{R}^m$ een continue functie. Stel dat $X: J \to \mathbb{R}^m$ en $Y: J \to \mathbb{R}^m$ continue en differentieerbare functies zijn, zodat

$$\forall t \in \mathbf{J}, \quad \frac{d\mathbf{X}}{dt} \leq \mathbf{M}(t)\mathbf{X}(t) + \mathbf{H}(t), \quad \frac{d\mathbf{Y}}{dt} \geq \mathbf{M}(t)\mathbf{Y}(t) + \mathbf{H}(t)$$

en X(t_0) \leq Y(t_0). Dan X(t) \leq Y(t) voor alle $t \in$ J met $t \ge t_0$.

Bewijs. Laat Z(t) = Y(t) - X(t) en

$$\mathbf{G}(t) = \mathbf{M}(t)\mathbf{X}(t) + \mathbf{H}(t) - \frac{d\mathbf{X}}{dt} + \frac{d\mathbf{Y}}{dt} - \mathbf{M}(t)\mathbf{Y}(t) - \mathbf{H}(t).$$

. Dan zijn Z(t_0) ≥ 0 , G(t) ≥ 0 en

$$\frac{d\mathbf{Z}}{dt} = \frac{d\mathbf{Y}}{dt} - \frac{d\mathbf{X}}{dt} = \mathbf{M}(t)\mathbf{Z}(t) + \mathbf{G}(t).$$

Door stelling 2.5, $Z(t) \ge 0$ en dus $X(t) \le Y(t)$ voor alle $t \in J$ met $t \ge t_0$. \Box

Definitie 2.7. *Een vierkante matrix* M *zodat* $M_{i,j} \ge 0$ *voor alle* $i \ne j$ *wordt gezegd* niet vereenvoudigbaar *te zijn als er voor alle* $i \ne j$ *een geheel getal* $p \ge 1$ *bestaat en een rij* k_0, k_1, \ldots, k_p *zodat* $k_0 = i, k_p = j, k_\ell \ne k_{\ell+1}$ *voor alle* $0 \le \ell \le p-1$ *en*

$$\mathbf{M}_{k_0,k_1} \times \mathbf{M}_{k_1,k_2} \times \cdots \times \mathbf{M}_{k_{p-1},k_p} > 0.$$

Propositie 2.8. Desclife aannames als in 2.5. Neem verder aan dat $X_0 \neq 0$ en de matrix $M(t_0)$ niet vereenvoudigbaar zijn. Dan is $X_i(t) > 0$ voor alle $t \in J$ zodat $t > t_0$ en voor $1 \leq i \leq m$.

Bewijs. Volgens stelling 2.5, $X(t) \ge 0$ voor alle $t \in J$ met $t \ge t_0$. We hebben voor alle *i* en alle $t \in J$ zo dat $t > t_0$,

$$\frac{d\mathbf{X}_i}{dt} - \mathbf{M}_{i,i}(t)\mathbf{X}_i(t) = \sum_{j \neq i} \mathbf{M}_{i,j}(t)\mathbf{X}_j(t) + \mathbf{G}_i(t) \ge \sum_{j \neq i} \mathbf{M}_{i,j}(t)\mathbf{X}_j(t).$$

Daarom

$$\frac{d}{dt} \left[\exp\left(-\int_{t_0}^t \mathbf{M}_{i,i}(u) \, du\right) \mathbf{X}_i(t) \right]$$

$$\geq \exp\left(-\int_{t_0}^t \mathbf{M}_{i,i}(u) \, du\right) \sum_{j \neq i} \mathbf{M}_{i,j}(t) \, \mathbf{X}_j(t)$$

en

$$\begin{aligned} \mathbf{X}_{i}(t) \geq &\exp\left(\int_{t_{0}}^{t}\mathbf{M}_{i,i}(u)\,du\right)\mathbf{X}_{i}(0) \\ &+\sum_{j\neq i}\int_{t_{0}}^{t}\exp\left(\int_{s}^{t}\mathbf{M}_{i,i}(u)\,du\right)\mathbf{M}_{i,j}(s)\,\mathbf{X}_{j}(s)\,ds. \end{aligned}$$

Veronderstel dat j_0 bestaat zodanig dat $X_{j_0}(t_0) > 0$. Daarom

$$\mathbf{X}_{j_0}(t) \ge \exp\left(\int_{t_0}^t \mathbf{M}_{j_0,j_0}(u) \, du\right) \mathbf{X}_{j_0}(0) > 0$$

voor alle $t \in J$ zodanig dat $t > t_0$.

Laat $i \neq j_0$ zijn. Aangezien de matrix $M(t_0)$ niet vereenvoudigbaar is, bestaat er een geheel getal $p \ge 1$ en een rij k_0, k_1, \ldots, k_p zodanig dat $k_0 = i$, $k_p = j_0, k_\ell \neq k_{\ell+1}$ voor alle $0 \le \ell \le p-1$ en

$$\mathbf{M}_{k_0,k_1}(t_0) \times \mathbf{M}_{k_1,k_2}(t_0) \times \cdots \times \mathbf{M}_{k_{p-1},k_p}(t_0) > 0.$$

Elk van de factoren van dit product is strikt positief. Aangezien de functie $t \mapsto M(t)$ continu is, bestaat er $\varepsilon > 0$ zodat voor alle $t \in]t_0; t_0 + \varepsilon[$,

$$\mathbf{M}_{k_0,k_1}(t) > 0, \quad \mathbf{M}_{k_1,k_2}(t) > 0, \quad \dots \quad \mathbf{M}_{k_{p-1},k_p}(t) > 0.$$

Daarom

$$\mathbf{X}_{k_{p-1}}(t) \ge \int_{t_0}^t \exp\left(\int_s^t \mathbf{M}_{k_{p-1},k_{p-1}}(u) \, du\right) \mathbf{M}_{k_{p-1},j_0}(s) \, \mathbf{X}_{j_0}(s) \, ds > 0$$

voor alle $t \in J$ met $t > t_0$. We leiden op dezelfde manier voor alle $t \in I$ met $t > t_0$ af dat $X_{k_{p-2}}(t) > 0, ..., X_{k_1}(t) > 0$ en tenslotte $X_{k_0}(t) = X_i(t) > 0$. \Box

Hoofdstuk 3

Reproductiviteit

Voor epidemie-modellen met meerdere compartimenten en een constante omgeving wordt de reproductiviteit \mathcal{R}_0 vaak weergegeven als de spectrale straal van een zogenaamde volgende-generatiematrix. Dit begrip strekt zich ook uit tot modellen die gestructureerd zijn door de tijd sinds de besmetting.

3.1 Stelsels van differentiaalvergelijkingen

Veel wiskundige modellen van epidemieën hebben de vorm van een stelsel van gewone niet-lineaire differentiaalvergelijkingen, zoals in hoofdstukken 1 en 2. Aan het begin van de epidemie vertegenwoordigen de geïnfecteerde individuen, die van *m* verschillende types kunnen zijn ($m \ge 1$), bv. E en I in het S-E-I-R model, een verwaarloosbare fractie van de bevolking zodat het model kan worden gelineariseerd om een lineair systeem te verkrijgen voor alleen de geïnfecteerde compartimenten. Dit systeem is meestal van de vorm

$$\frac{d\mathbf{I}}{dt} = (\mathbf{A} - \mathbf{B} - \mathbf{C})\mathbf{I},\tag{3.1}$$

waar:

- coëfficiënt I_k(t) van vector I = (I₁,..., I_m) het aantal besmette personen van type k is;
- coëfficiënt

$$A_{i,j} \ge 0$$

van infectie-matrix A de snelheid waarmee een geïnfecteerde persoon van type *j* nieuwe geïnfecteerde personen van type *i* voortbrengt is; matrix B een diagonaalmatrix is en

$$\mathbf{B}_{i,i} \ge 0$$

de snelheid waarmee een besmet persoon van type *j* ophoudt besmet te zijn;

• overdrachtsmatrix C zodanig is dat

$$\forall i \neq j, -\mathbf{C}_{i,j} \ge 0$$

de snelheid is waarmee een besmet persoon van type j een besmet persoon van type i wordt en

$$\mathbf{C}_{j,j} = -\sum_{i \neq j} \mathbf{C}_{i,j} \ge 0;$$

de eigenwaarden van de matrix

$$D = B + C$$

allemaal een strikt positief reëel deel hebben.

Voor elke matrix M noteren we Sp(M) zijn spectrum, d.w.z. de verzameling van zijn eigenwaarden. De spectrale straal van de natrix is gegeven door

$$\rho(\mathbf{M}) = \max\{|\lambda| : \lambda \in \operatorname{Sp}(\mathbf{M})\}$$

en de stabiliteit modulus is gegeven door

$$\sigma(\mathbf{M}) = \max \left\{ \operatorname{Re}(\lambda) : \lambda \in \operatorname{Sp}(\mathbf{M}) \right\}.$$

Het asymptotisch gedrag van het lineaire stelsel van differentiaal vergelijkingen (3.1) hangt af van het spectrum van de matrix

$$\mathbf{M} = \mathbf{A} - \mathbf{D}$$

De oplossing I = 0 is asymptotisch stabiel wanneer en alleen wanneer

$$\sigma(M) < 0$$

[16, Theorem 6.13]. Bijvoorbeeld, in de afwezigheid van infectie (A = 0), reduceert het systeem tot

$$\frac{d\mathbf{I}}{dt} = -\mathbf{D}\mathbf{I}$$

Als $\sigma(-D) < 0$ convergeren de oplossingen van het laatstgenoemde stelsel naar 0.

Epidemiologen gebruiken vaak liever een andere index als drempelwaarde in plaats van de stabiliteit-modulus, namelijk de reproductiviteit \mathcal{R}_0 , die wij zullen trachten te verklaren in het kader van het gelineariseerde model (3.1).

Stel dat de geïnfecteerde populatie op het begintijdstip t = 0 tot generatie 0 behoort en dat $I^{(n)}(t)$ de geïnfecteerde populatie is die op tijdstip t tot generatie n behoort. Voor alle t > 0 en alle $n \ge 0$ kan de geïnfecteerde populatie dan beschreven worden door

$$\mathbf{I}^{(0)}(0) = \mathbf{I}(0), \quad \frac{d\mathbf{I}^{(0)}}{dt} = -\mathbf{D}\mathbf{I}^{(0)}(t), \tag{3.2}$$

$$\mathbf{I}^{(n+1)}(0) = 0, \quad \frac{d\mathbf{I}^{(n+1)}}{dt} = \mathbf{A}\mathbf{I}^{(n)}(t) - \mathbf{D}\mathbf{I}^{(n+1)}(t).$$
(3.3)

Deze laatste vergelijking betekent dat de besmette personen die tot generatie n+1 behoren, besmet zijn door personen van generatie n.

Propositie 3.1. *Voor alle* $n \ge 0$ *en alle* $t \ge 0$,

$$\mathbf{I}^{(n+1)}(t) = \int_0^t e^{-x\mathbf{D}} \mathbf{A} \mathbf{I}^{(n)}(t-x) dx$$

Bewijs. Met vergelijking (3.3), hebben we

$$\frac{d}{dt}\left(\mathrm{e}^{t\mathrm{D}}\mathrm{I}^{(n+1)}(t)\right) = \mathrm{e}^{t\mathrm{D}}\left[\mathrm{D}\mathrm{I}^{(n+1)}(t) + \frac{d\mathrm{I}^{(n+1)}}{dt}\right] = \mathrm{e}^{t\mathrm{D}}\mathrm{A}\mathrm{I}^{(n)}(t).$$

Aangezien $I^{(n+1)}(0) = 0$, geeft een integratie

$$\mathbf{I}^{(n+1)}(t) = \int_0^t e^{-(t-s)\mathbf{D}} \mathbf{A} \mathbf{I}^{(n)}(s) \, ds.$$

 $\|\cdot\|$ is een matrixnorm die ondergeschikt is aan een vectornorm die op dezelfde manier is genoteerd.

Propositie 3.2. *Er bestaan* $\alpha > 0$ *en* $\beta > 0$ *zodanig dat voor alle* $n \ge 0$ *en alle t* ≥ 0 ,

$$\|\mathbf{I}^{(n)}(t)\| \leq \alpha^{n+1} \|\mathbf{A}\|^n \frac{t^n}{n!} e^{-\beta t} \|\mathbf{I}(0)\|$$

Bewijs. Aangezien $\sigma(-D) < 0$, toont [16, lemma 6.15] aan dat er $\alpha > 0$ en $\beta > 0$ bestaan zodat voor alle $x \ge 0$

$$\|\mathrm{e}^{-x\mathrm{D}}\| \leqslant \alpha \,\mathrm{e}^{-\beta x}.$$

We hebben

$$\|\mathbf{I}^{(0)}(t)\| = \|\mathbf{e}^{-t\mathbf{D}}\mathbf{I}(0)\| \le \|\mathbf{e}^{-t\mathbf{D}}\| \|\mathbf{I}(0)\| \le \alpha \, \mathbf{e}^{-\beta t} \|\mathbf{I}(0)\|$$

en de ongelijkheid van de stelling is waar voor n = 0. Door herhaling, laten we aannemen dat het waar is op rang n - 1 met $n \ge 1$. Dan

$$\begin{split} \|\mathbf{I}^{(n)}(t)\| &\leq \int_{0}^{t} \|\mathbf{e}^{-x\mathbf{D}} \mathbf{A} \mathbf{I}^{(n-1)}(t-x)\| \, dx \\ &\leq \int_{0}^{t} \|\mathbf{e}^{-x\mathbf{D}}\| \, \|\mathbf{A}\| \, \|\mathbf{I}^{(n-1)}(t-x)\| \, dx \\ &\leq \|\mathbf{A}\| \int_{0}^{t} \alpha \, \mathbf{e}^{-\beta x} \, \alpha^{n} \, \|\mathbf{A}\|^{n-1} \, \frac{(t-x)^{n-1}}{(n-1)!} \, \mathbf{e}^{-\beta(t-x)} \, \|\mathbf{I}(0)\| \, dx \\ &\leq \alpha^{n} \, \|\mathbf{A}\|^{n+1} \mathbf{e}^{-\beta t} \, \int_{0}^{t} \frac{(t-x)^{n-1}}{(n-1)!} \, dx \, \|\mathbf{I}(0)\| \\ &= \alpha^{n} \, \|\mathbf{A}\|^{n+1} \, \mathbf{e}^{-\beta t} \, \frac{t^{n}}{n!} \, \|\mathbf{I}(0)\|. \end{split}$$

Met dit voorstel, is de serie

$$\sum_{n \geqslant 0} \mathbf{I}^{(n)}(t)$$

inderdaad convergent en is de som I(t) een oplossing van het stelsel (3.1) met de begin-voorwaarde I(0).

Propositie 3.3. Laten we stellen dat

$$h^{(n)}(t) = AI^{(n)}(t),$$
$$K(x) = Ae^{-xD}.$$

Dan is voor alle $n \ge 0$ en alle $t \ge 0$,

$$h^{(n+1)}(t) = \int_0^t \mathbf{K}(x) h^{(n)}(t-x) dx,$$
$$\|h^{(n)}(t)\| \le \alpha^{n+1} \|\mathbf{A}\|^{n+1} \frac{t^n}{n!} e^{-\beta t} \|\mathbf{I}(0)\|$$

en $h^{(0)}(t) = \mathbf{K}(t) \mathbf{I}(0)$.

Vector $h^{(n)}(t)$ is de vector van nieuwe infecties per tijdseenheid als gevolg van generatie *n* op tijdstip *t*, d.w.z. de incidentie.

Bewijs. We hebben

$$h^{(n+1)}(t) = A I^{(n+1)}(t) = A \int_0^t e^{-xD} A I^{(n)}(t-x) dx$$
$$= \int_0^t A e^{-xD} h^{(n)}(t-x) dx.$$

Verder,

$$h^{(0)}(t) = AI^{(0)}(t) = Ae^{-tD}I(0).$$

De begrippen positieve matrix en positieve vector worden in herinnering gebracht in Appendix 3.3. Er wordt aangenomen dat $I(0) \ge 0$.

Propositie 3.4. *Voor alle* $x \ge 0$, *zijn de matrices* e^{-xD} , $K(x) = Ae^{-xD}$, D^{-1} *en* AD^{-1} *positief en*

$$\int_0^{+\infty} \mathrm{e}^{-x\mathrm{D}} \, dx = \mathrm{D}^{-1}.$$

Bovendien geldt dat $h^{(n)}(t) \ge 0$ voor alle $n \ge 0$ en alle $t \ge 0$.

Bewijs. Laat $x \ge 0$ zijn. Laat ook $Q(x) = e^{-xD}$ gelden. Dan

$$\frac{d\mathbf{Q}}{dx} = -\mathbf{D}\mathbf{Q}(x)$$

en Q(0) = \mathscr{I} (de identiteitsmatrix). De stelling 2.5 toegepast op elk van de eenheidsvectoren toont aan dat Q(*x*) \ge 0 voor alle *x* \ge 0, aangezien $-D_{i,j} = -C_{i,j} \ge 0$ indien $i \ne j$. Net als A \ge 0 is ook de matrix K(*x*) = A Q(*x*) positief.

Door te integreren vinden we

$$\mathbf{Q}(x) - \mathbf{Q}(0) = \mathbf{Q}(x) - \mathscr{I} = -\mathbf{D} \int_0^x \mathbf{Q}(y) \, dy$$

Aangezien $\sigma(-D) < 0$, hebben we $Q(x) \rightarrow 0$ wanneer $x \rightarrow +\infty$ [16, lemma 6.15]. Dus de integraal is convergent en

$$\mathscr{I} = \mathsf{D} \int_0^{+\infty} \mathsf{Q}(y) \, dy$$

Aangezien $Q(x) \ge 0$, hebben we

$$\mathbf{D}^{-1} = \int_0^{+\infty} \mathbf{Q}(x) \, dx \ge 0.$$

De positiviteit van de vector $h^{(n)}(t)$ volgt uit stelling 3.3.

 \square

Propositie 3.5. Laten we stellen dat

$$H(n) = \int_0^{+\infty} h^{(n)}(t) dt,$$

$$\mathcal{K} = \int_0^{+\infty} \mathbf{K}(x) dx = \mathbf{A} \mathbf{D}^{-1}$$

Dan geldt voor alle $n \ge 0$ *,*

$$\mathbf{H}(n) = \mathscr{K}^{n+1}\mathbf{I}(0).$$

Vector H(n) is de vector van de incidenties ten gevolge van generatie *n*. De positieve matrix \mathscr{K} wordt "de volgende generatie matrix" genoemd.

Bewijs. Volgens propositie 3.3,

$$\begin{split} \mathrm{H}(n+1) &= \int_{0}^{+\infty} h^{(n+1)}(t) \, dt \\ &= \int_{0}^{+\infty} \int_{0}^{t} \mathrm{K}(x) \, h^{(n)}(t-x) \, dx \, dt \\ &= \int_{0}^{+\infty} \int_{x}^{+\infty} \mathrm{K}(x) \, h^{(n)}(t-x) \, dt \, dx \\ &= \left(\int_{0}^{+\infty} \mathrm{K}(x) \, dx\right) \left(\int_{0}^{+\infty} h^{(n)}(t) \, dt\right) = \mathscr{K} \, \mathrm{H}(n). \end{split}$$

Bovendien,

$$\mathbf{H}(0) = \int_0^{+\infty} h^{(0)}(t) \, dt = \int_0^{+\infty} \mathbf{K}(t) \, \mathbf{I}(0) \, dt = \mathscr{K} \, \mathbf{I}(0). \qquad \Box$$

Definitie 3.6. De reproductiviteit \mathcal{R}_0 is de spectrale straal van matrix \mathcal{K} :

$$\mathscr{R}_0 = \rho(\mathscr{K}) = \rho(\mathrm{AD}^{-1}).$$

Propositie 3.7. Neem aan dat de matrix M = A - D irreducibel is en dat $A \neq 0$. Dan is de functie $r :]0; +\infty[\rightarrow \mathbb{R}$ gedefinieerd door

$$r(\lambda) = \sigma(A/\lambda - D)$$

continu en strikt afnemend. Als $\mathscr{R}_0 > 0$, dan is \mathscr{R}_0 de unieke oplossing van vergelijking $r(\lambda) = 0$.

Bewijs. Er bestaat $k \in \mathbb{R}$ zodanig dat de matrix $-D + k\mathscr{I}$ positief is. Dan is de matrix $A/\lambda - D + k\mathscr{I}$ positief voor alle $\lambda > 0$. Daarom

$$r(\lambda) + k = \sigma(A/\lambda - D + k\mathscr{I}) = \rho(A/\lambda - D + k\mathscr{I})$$

(corollarium 3.18). De continuïteit van de spectrale straal [64, Stelling 3.16] impliceert dus de continuïteit van de functie $r(\lambda)$.

Laat $0 < \lambda_1 < \lambda_2$ zijn. Aangezien de matrix A positief is, hebben we $A/\lambda_1 \ge A/\lambda_2$. Daarom $A/\lambda_1 - D \ge A/\lambda_2 - D$ en $r(\lambda_1) \ge r(\lambda_2)$ gegeven de stelling 3.26. De matrix A - D is irreducibel. Zo is de matrix $A/\lambda_1 - D$ want voor alle $i \ne j$,

$$A_{i,j}/\lambda - D_{i,j} > 0 \Leftrightarrow [A_{i,j} > 0 \text{ ou } - D_{i,j} > 0] \Leftrightarrow A_{i,j} - D_{i,j} > 0.$$

Gegeven stelling 3.27, zou $r(\lambda_1) = r(\lambda_2)$ impliceren dat $A/\lambda_1 - D = A/\lambda_2 - D$, hetgeen onmogelijk is aangezien $A \neq 0$. Daarom $r(\lambda_1) > r(\lambda_2)$.

Veronderstel $\mathscr{R}_0 > 0$. De matrix $\mathscr{K} = AD^{-1}$ is dan positief. Gegeven stelling 3.17, bestaat er een vector $u \neq 0$ zo dat $AD^{-1}u = \mathscr{R}_0 u$ en $u \ge 0$. Laten we stellen dat $v = D^{-1}u$. Dan $v \neq 0$ en $Av = \mathscr{R}_0 Dv$. Bovendien, $v \ge 0$ sinds $D^{-1} \ge 0$ en $u \ge 0$. Aangezien $\mathscr{R}_0 > 0$, hebben we : $(A/\mathscr{R}_0 - D)v = 0$. De matrix $A/\mathscr{R}_0 - D$ is irreducibel. Daarom $\sigma(A/\mathscr{R}_0 - D) = 0$ (stelling 3.25).

Corollarium 3.8. *Stel dat de matrix* M = A - D *irreducibel is en dat* $\Re_0 > 0$. *Dan*

$$\begin{split} &\sigma(\mathrm{A}-\mathrm{D}) < 0 \Leftrightarrow \mathscr{R}_0 = \rho(\mathrm{A}\mathrm{D}^{-1}) < 1, \\ &\sigma(\mathrm{A}-\mathrm{D}) = 0 \Leftrightarrow \mathscr{R}_0 = 1, \\ &\sigma(\mathrm{A}-\mathrm{D}) > 0 \Leftrightarrow \mathscr{R}_0 > 1. \end{split}$$

Bewijs. We hebben $r(1) = \sigma(A - D)$ en $r(\mathscr{R}_0) = 0$. De functie $r(\lambda)$ is strikt afnemend. Daarom

$$\begin{aligned} r(1) < 0 &= r(\mathscr{R}_0) \Leftrightarrow 1 > \mathscr{R}_0, \\ r(1) &= 0 = r(\mathscr{R}_0) \Leftrightarrow 1 = \mathscr{R}_0, \\ r(1) > 0 &= r(\mathscr{R}_0) \Leftrightarrow 1 < \mathscr{R}_0. \end{aligned}$$

Opmerking 3.9. Als $H(n) = (H_1(n), \ldots, H_m(n))$, laten we zeggen

$$g(n) = \sum_{i=1}^m \mathbf{H}_i(n).$$

 \square

Dit is de totale incidentie bij generatie n. Als de matrix \mathscr{K} primitief is (definitie 3.23), dan toont stelling 3.24 aan dat $H(n)/(\mathscr{R}_0)^n$ convergeert als $n \to +\infty$ naar een eigenvector met strikt positieve componenten van de matrix \mathscr{K} . Dus \mathscr{R}_0 is de asymptotische groeisnelheid per generatie:

$$\lim_{n \to +\infty} \sqrt[n]{g(n)} = \mathscr{R}_0.$$

Preciezer gezegd, hebben we

$$\lim_{n \to +\infty} \frac{g(n+1)}{g(n)} = \mathscr{R}_0.$$

Opmerking 3.10. Als de infectie matrix A gedeeld wordt door een getal k > 0, dan wordt de reproductiviteit $\Re_0 = \rho(AD^{-1})$ ook gedeeld door dit getal k. In het bijzonder zal de nieuwe reproductiviteit strikt kleiner zijn dan 1 als en slechts alleen als $k > \Re_0$. De reproductiviteit is dus de minimale factor waarmee de infectie matrix A, d.w.z. de contact cijfers, moeten worden gedeeld om het ziektevrije evenwicht stabiel te maken, d.w.z. om een epidemie te voorkomen.

Opmerking 3.11. Als er slechts één type besmet persoon is (m = 1), dan

$$\mathbf{H}(n+1) = \mathscr{R}_0 \mathbf{H}(n).$$

In dit bijzondere geval is \mathcal{R}_0 niet alleen de asymptotische groeisnelheid per generatie, maar ook het gemiddelde aantal secundaire gevallen dat door een eerste geval wordt besmet. Dit is de gebruikelijke definitie van reproductiviteit.

Opmerking 3.12. Indien de structuur van de geïnfecteerde populatie niet wordt voorgesteld door de verzameling $\{1, \ldots, m\}$ maar bijvoorbeeld door het interval $[0; +\infty[$ zoals in sommige epidemie modellen met leeftijdsstructuur, dan lijkt de theorie er sterk op: \Re_0 is de spectrale straal van een integraaloperator van de volgende generatie met een positieve kernel $\mathcal{K}(x, y)$ en

$$\mathbf{H}(n+1,x) = \int_0^{+\infty} \mathscr{K}(x,y) \,\mathbf{H}(n,y) \, dy.$$

Onder bepaalde voorwaarden toont de stelling van Krein-Rutman 7.26 aan dat de rij $H(n, \cdot)/(\mathscr{R}_0)^n$ convergeert naar een positieve eigenfunctie van de integraaloperator. Nogmaals, \mathscr{R}_0 is de asymptotische groeisnelheid per generatie.

Voorbeelden.

- 1. Voor het S-I-R model in 1, hebben we : m = 1, A = a, B = b en C = 0. Dus $\mathscr{R}_0 = a/b$.
- 2. Voor het S-E-I-R model van hoofdstuk 2, hebben we : m = 2,

$$\mathbf{A} = \left(\begin{array}{cc} 0 & a \\ 0 & 0 \end{array}\right), \quad \mathbf{B} = \left(\begin{array}{cc} 0 & 0 \\ 0 & b \end{array}\right), \quad \mathbf{C} = \left(\begin{array}{cc} c & 0 \\ -c & 0 \end{array}\right).$$

Aldus

$$AD^{-1} = \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} c & 0 \\ -c & b \end{pmatrix}^{-1}$$
$$= \begin{pmatrix} 0 & a \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1/c & 0 \\ 1/b & 1/b \end{pmatrix} = \begin{pmatrix} a/b & a/b \\ 0 & 0 \end{pmatrix}$$

en we hebben weer $\mathscr{R}_0 = a/b$.

3.2 Een partiële differentiaalvergelijking

Veronderstel dat er slechts één type besmette persoon is, maar dat dit type wordt gestructureerd door de tijd sinds de besmetting. Definieer I(t, x) als de dichtheid van besmette personen sinds *x* tijdseenheden op tijdstip *t*, a(x) als de werkelijke contactfrequentie en b(x) als de snelheid waarmee geïnfecteerde personen ophouden met het overdragen van de infectie. De functies a(x) en b(x) worden verondersteld continu, begrensd en positief te zijn. Verder wordt aangenomen dat er een $\beta > 0$ bestaat zodat $b(x) \ge \beta$ voor alle *x* groot genoeg is. In de lineaire benadering aan het begin van een epidemie hebben we voor alle x > 0 en t > 0,

$$I(0,x) = I_0(x),$$
 (3.4)

$$I(t,0) = \int_0^{+\infty} a(x) I(t,x) dx,$$
 (3.5)

$$\frac{\partial \mathbf{I}}{\partial t} + \frac{\partial \mathbf{I}}{\partial x} = -b(x)\mathbf{I}(t,x) .$$
(3.6)

Deze partiële differentiaalvergelijking wordt ook wel de McKendrick-von Foerster[3, Hoofdstuk 18] vergelijking genoemd.

Stel dat de geïnfecteerde populatie op het begintijdstip t = 0 behoort tot generatie 0 en dat $I^{(n)}(t,x)$ de geïnfecteerde populatie is die behoort tot gene-

ratie *n* op het tijdstip *t* dan wordt deze voor t > 0 en x > 0 gegeven door

$$I^{(0)}(0,x) = I_0(x),$$

$$I^{(0)}(t,0) = 0,$$

$$\frac{\partial I^{(0)}}{\partial t} + \frac{\partial I^{(0)}}{\partial x} = -b(x) I^{(0)}(t,x)$$

en voor alle $n \ge 0$ door

$$I^{(n+1)}(0,x) = 0,$$

$$I^{(n+1)}(t,0) = \int_0^{+\infty} a(x) I^{(n)}(t,x) dx,$$

$$\frac{\partial I^{(n+1)}}{\partial t} + \frac{\partial I^{(n+1)}}{\partial x} = -b(x) I^{(n+1)}(t,x).$$

Geïnfecteerde personen van generatie n + 1 werden besmet door personen van generatie n. Met deze definities, is

$$\mathbf{I}(t,x) = \sum_{n \ge 0} \mathbf{I}^{(n)}(t,x)$$

inderdaad een oplossing van het stelsel (3.4)-(3.6) met de begin-voorwaarde I(0,x).

Propositie 3.13. Laten we stellen dat

$$h^{(n)}(t) = \mathbf{I}^{(n+1)}(t,0), \quad \mathbf{K}(x) = a(x) \exp\left(-\int_0^x b(y) \, dy\right).$$

Dan voor alle $n \ge 0$,

$$h^{(n+1)}(t) = \int_0^t \mathbf{K}(x) h^{(n)}(t-x) dx$$

en

$$h^{(0)}(t) = \int_{t}^{+\infty} a(x) \exp\left(-\int_{x-t}^{x} b(y) \, dy\right) I_0(x-t) \, dx$$

De vector $h^{(n)}(t)$ is de incidentie ten gevolge van generatie *n* op tijdstip *t*.

Bewijs. We hebben

$$\begin{split} h^{(n)}(t) &= \mathrm{I}^{(n+1)}(t,0) \\ &= \int_0^{+\infty} a(x) \, \mathrm{I}^{(n)}(t,x) \, dx \\ &= \int_0^t a(x) \, \mathrm{I}^{(n)}(t,x) \, dx + \int_t^{+\infty} a(x) \, \mathrm{I}^{(n)}(t,x) \, dx \\ &= \int_0^t a(x) \exp\left(-\int_0^x b(y) \, dy\right) \, \mathrm{I}^{(n)}(t-x,0) \, dx \\ &+ \int_t^{+\infty} a(x) \exp\left(-\int_{x-t}^x b(y) \, dy\right) \, \mathrm{I}^{(n)}(0,x-t) \, dx. \end{split}$$

Daarom

$$h^{(0)}(t) = \int_{t}^{+\infty} a(x) \exp\left(-\int_{x-t}^{x} b(y) \, dy\right) \mathbf{I}_{0}(x-t) \, dx$$

en voor alle $n \ge 1$,

$$h^{(n)}(t) = \int_0^t \mathbf{K}(x) h^{(n-1)}(t-x) dx.$$

De term

$$\exp\left(-\int_0^x b(y)\,dy\right)$$

is de kans dat een individu na *x* tijdseenheden nog steeds geïnfecteerd is. Voor de besmettingsperiode kunnen dus zeer uiteenlopende verdelingen worden gemodelleerd.

Propositie 3.14. Laten we aannemen

$$\mathbf{H}(n) = \int_0^{+\infty} h^{(n)}(t) \, dt, \quad \mathscr{R}_0 = \int_0^{+\infty} \mathbf{K}(x) \, dx.$$

Dan voor alle $n \ge 0$,

$$\mathbf{H}(n+1) = \mathscr{R}_0 \mathbf{H}(n).$$

Bewijs. Precies zoals in het bewijs van stelling 3.5, vinden we

$$\mathbf{H}(n+1) = \left(\int_0^{+\infty} \mathbf{K}(x) \, dx\right) \mathbf{H}(n). \qquad \Box$$

en

Opmerking 3.15. Als de functies a(x) en b(x) constant zijn (we noteren ze a en b), dan

$$\mathscr{R}_0 = \int_0^{+\infty} a e^{-bx} dx = \frac{a}{b}$$
$$I(t) = \int_0^{+\infty} I(t, x) dx$$

is een oplossing van

$$\frac{d\mathbf{I}}{dt} = (a-b)\mathbf{I}.$$

Inderdaad,

$$\frac{d\mathbf{I}}{dt} = \int_0^{+\infty} \frac{\partial \mathbf{I}}{\partial t}(t, x) \, dx = -\int_0^{+\infty} \frac{\partial \mathbf{I}}{\partial x}(t, x) \, dx - b \int_0^{+\infty} \mathbf{I}(t, x) \, dx$$
$$= \mathbf{I}(t, 0) - b \, \mathbf{I}(t) = a \, \mathbf{I}(t) - b \, \mathbf{I}(t).$$

3.3 Appendix: positieve matrices

Definitie 3.16. *Men zegt dat een matrix* M positief *is als* $M_{i,j} \ge 0$ *voor alle i en j. Evenzo is een vector v positief als* $v_i \ge 0$ *voor alle i.*

Wij herinneren aan een aantal eigenschappen van positieve matrices. Voor de bewijzen, zie bijvoorbeeld [64, hoofdstuk 4] en ook [72, hoofdstuk 5] voor de stellingen 3.17 en 3.22.

Propositie 3.17. Stel dat M een positieve vierkante matrix is. Dan is de spectrale straal $\rho(M)$ een eigenwaarde van de matrix M en bestaat er een bijbehorende positieve eigenvector. Met andere woorden,

$$\exists v \ge 0, v \ne 0, Mv = \rho(M)v.$$

Corollarium 3.18. *Stel dat* M *een positieve vierkante matrix is. Dan* $\rho(M) = \sigma(M)$.

Stelling 3.19. (*Perron-Frobenius*). Als M een positieve irreducibele vierkante matrix is, dan is $\rho(M) > 0$ en is $\rho(M)$ een eenvoudige eigenwaarde van de matrix M. Bovendien is er een bijbehorende eigenvector waarvan alle elementen strikt positief zijn.

Propositie 3.20. *Een positieve onherleidbare vierkante matrix kan geen twee positieve lineair onafhankelijke eigenvectoren hebben.*

Voor twee matrices M en N, noteer M \leq N als M_{*i*,*j*} \leq N_{*i*,*j*} voor alle *i* en *j*.

Propositie 3.21. *Stel dat* M *en* N *twee positieve vierkante matrices zijn. Als* $M \leq N$, *dan* $\rho(M) \leq \rho(N)$.

Propositie 3.22. Stel dat M en N twee positieve vierkante matrices zijn. Veronderstel dat matrix N irreducibel is. Als $M \leq N$ en $\rho(M) = \rho(N)$, dan M = N.

Definitie 3.23. Als M een positieve vierkante matrix is, dan wordt M primitief genoemd als er een geheel getal $p \ge 1$ is zodat alle elementen van de matrix M^p strikt positief zijn.

Propositie 3.24. Als M een positieve primitieve vierkante matrix is bestaan de vectoren v en w waarvan alle elementen strikt positief zijn en zodanig dat

$$\mathbf{M} v = \boldsymbol{\rho}(\mathbf{M}) v, \quad {}^{\mathrm{t}}\mathbf{M} w = \boldsymbol{\rho}(\mathbf{M}) w, \quad {}^{\mathrm{t}}v w = 1.$$

Bovendien,

$$\lim_{n \to +\infty} \left(\frac{\mathbf{M}}{\boldsymbol{\rho}(\mathbf{M})}\right)^n = v^{\mathsf{t}} w.$$

Uit deze stellingen kunnen we gemakkelijk enkele eigenschappen afleiden van vierkante matrices waarvan de coëfficiënten buiten de diagonaal alleen positief zijn.

Propositie 3.25. Stel dat M een vierkante matrix is zodat $M_{i,j} \ge 0$ voor alle $i \ne j$ en veronderstel dat M irreducibel is. Dan zijn de volgende beweringen gelijkwaardig:

- *er bestaat een vector* $v \neq 0$ *zodanig dat* Mv = 0 *en* $v \ge 0$;
- $\sigma(\mathbf{M}) = 0.$

Bewijs. Er bestaat $k \in \mathbb{R}$ zodanig dat $M + k\mathscr{I}$ een positieve matrix is. Met de stelling 3.20 en het corollarium 3.18, hebben we de equivalenties:

- er bestaat een vector $v \neq 0$ zodanig dat Mv = 0 en $v \ge 0$;
- er bestaat een vector $v \neq 0$ zodat $(M + k\mathscr{I})v = kv$ en $v \ge 0$;

•
$$\rho(\mathbf{M}+k\mathscr{I})=k;$$

- $\sigma(\mathbf{M}+k\mathscr{I})=k$;
- $\sigma(\mathbf{M}) = 0.$

Propositie 3.26. Stel dat M en N vierkante matrices zijn van dezelfde orde zodat $M_{i,j} \ge 0$ en $N_{i,j} \ge 0$ voor alle $i \ne j$. Als $M \le N$, dan $\sigma(M) \le \sigma(N)$.

Bewijs. Er bestaat $k \in \mathbb{R}$ zodat $M + k\mathscr{I}$ een positieve matrix is. We hebben $M + k\mathscr{I} \leq N + k\mathscr{I}$. Refereer naar stelling 3.21, $\rho(M + k\mathscr{I}) \leq \rho(N + k\mathscr{I})$. Met de corollarium 3.18, hebben we $\sigma(M + k\mathscr{I}) \leq \sigma(N + k\mathscr{I})$. Daarom $\sigma(M) \leq \sigma(N)$.

Propositie 3.27. Stel dat M en N twee vierkante matrices van dezelfde orde zijn zodat $M_{i,j} \ge 0$ en $N_{i,j} \ge 0$ voor alle $i \ne j$ en veronderstel dat de matrix N irreducibel is. Als $M \le N$ en $\sigma(M) = \sigma(N)$, dan M = N.

Bewijs. Er bestaat $k \in \mathbb{R}$ zodanig dat $M + k\mathscr{I}$ een positieve matrix is. We hebben $M + k\mathscr{I} \leq N + k\mathscr{I}$. Door corollarium 3.18, hebben we

$$\rho(\mathbf{M}+k\mathscr{I}) = \sigma(\mathbf{M}+k\mathscr{I}) = \sigma(\mathbf{M}) + k = \sigma(\mathbf{N}+k\mathscr{I}) = \rho(\mathbf{N}+k\mathscr{I})$$

Uit stelling 3.22 hebben we $M + k\mathscr{I} = N + k\mathscr{I}$. Daarom M = N.

Bibliografie

- [1] Anselme B., 2015. Biomathématiques. Dunod, Paris.
- [2] Auger P., Lett C., Poggiale J.-C., 2015. *Modélisation mathématique en écologie*. Dunod, Paris.
- [3] Bacaër N., 2008. *Histoires de mathématiques et de populations*. Cassini, Paris.
- [4] Bacaër N., 2012. Le modèle de Kermack et McKendrick pour la peste à Bombay et la reproductivité nette d'un type avec de la saisonnalité. https://hal.archives-ouvertes.fr/hal-01340008
- [5] Bacaër N., 2016. Le modèle stochastique SIS pour une épidémie dans un environnement aléatoire. *Journal of Mathematical Biology* 73: 847-866.
- [6] Bacaër N., 2017. Sur les processus linéaires de naissance et de mort sous-critiques dans un environnement aléatoire. *Journal of Mathematical Biology* 75: 85-108.
- [7] Bacaër N., 2017. Sur la vitesse d'extinction d'une population dans un environnement aléatoire. *Comptes Rendus Biologies* 340: 259-263.
- [8] Bacaër N., 2018. Sur l'extinction des populations avec plusieurs types dans un environnement aléatoire. *Comptes Rendus Biologies* 341: 145-151.
- [9] Bacaër N., 2020. Traduire automatiquement des articles dans les sciences dites dures. https://hal.archives-ouvertes.fr/hal-03059052.
- [10] Bacaër N., Ed-Darraz A., 2014. Sur les processus linéaires de naissance et de mort dans un environnement aléatoire. https://hal.archivesouvertes.fr/hal-01266287
- [11] Bacaër N., van Wissen L., Verdonck R., van Baalen M., et al., 2022. *Een korte geschiedenis van wiskundige populatiedynamica*. Paris, www.ummisco.ird.fr/perso/bacaer/nl.pdf
- [12] Bacaër N., Lobry C., Sari T., 2020. Sur la probabilité d'extinction d'une population dans un environnement périodique lent. *Revue ARIMA* 32:

81-95.

- [13] Barles G., 1994. Solutions de viscosité des équations de Hamilton-Jacobi. Springer, Berlin.
- [14] Baudon C., Parent du Châtelet I., Antona D., Freymuth F., Poujol I., Maine C., Lévy-Bruhl D., 2011. Caractéristiques de l'épidémie de rougeole démarrée en France depuis 2008: bilan des déclarations obligatoires pour les cas survenus jusqu'au 30 avril 2011, *Bulletin épidémiologique hebdomadaire* 33/34: 353-358.
- [15] Benoît E., 1981. Relation entrée-sortie, Comptes rendus de l'Académie des sciences Paris (série I) 293: 293-296.
- [16] Berthelin F., 2017. Équations différentielles. Cassini, Paris.
- [17] Böckh R., 1890. Die statistische Messung der ehelichen Fruchtbarkeit. Bulletin de l'Institut international de statistique V: 159-187. https://gallica.bnf.fr/ark:/12148/bpt6k615522
- [18] Boëlle P.-Y., Dervaux B., Lévy-Bruhl D., Thiébaut R., 2017. Modélisation mathématique et épidémiologie de terrain, *in* F. Dabis, J.-C. Desenclos (éd.), *Épidémiologie de terrain*, 2^e éd., John Libbey Eurotext, Montrouge : 674-682.
- [19] Brezis H., 1983. Analyse fonctionnelle. Masson, Paris.
- [20] Candelpergher B., 2009. Calcul intégral. Cassini, Paris.
- [21] Choisy M., Cazelles B., 2009. Conséquences des dynamiques épidémiques en santé publique : rôle des modèles mathématiques, *in* [32, p. 3-39].
- [22] Cohen-Tannoudji, C., Diu, B., Laloë, F., 1986. Mécanique quantique, 3^e éd., Hermann, Paris.
- [23] Corlosquet-Habart M., Janssen J., Manca R., 2012. *Modélisation stochastique du risque de pandémie : stratégies de couverture et d'assurance*. Lavoisier, Cachan.
- [24] Dang-Vu H., Delcarte C., 2000. Bifurcations et chaos. Ellipses, Paris.
- [25] Dautray R., Lions J.-L., 1988. Analyse mathématique et calcul numérique pour les sciences et les techniques, volume 4. Masson, Paris.
- [26] Dautray R., Lions J.-L., 1988. Analyse mathématique et calcul numérique pour les sciences et les techniques, volume 5. Masson, Paris.
- [27] Degla G., 2008. An overview of semi-continuity results on the spectral radius and positivity. *Journal of Mathematical Analysis and Applications* 338: 101-110.
- [28] Drnovšek R., 2000. Bounds for the spectral radius of positive operators. *Commentationes Mathematicae Universitatis Carolinae* 41: 459-467.
- [29] Duhamel G., Gombert D., Paupy C., Quatresous I., 2006. Mission

d'appui à la lutte contre l'épidémie de chikungunya à la Réunion. Inspection générale des affaires sociales, Paris.

- [30] Françoise J.P., 2005. Oscillations en biologie. Springer/SMAI, Berlin.
- [31] Gani J., Badrikian J., 1975. Processus stochastiques de population, in P.L. Hennequin (éd.), École d'été de probabilités de Saint-Flour IV-1974. Springer, Berlin: 188-293.
- [32] Guégan J.-F., Choisy M. (éd.), 2008. Introduction à l'épidémiologie intégrative des maladies infectieuses et parasitaires. De Boeck, Bruxelles.
- [33] Guégan J.-F., Morand S., 2009. Épidémiologie et écologie, un mariage de raison(s) pour une histoire d'échelles ! *in* [32, p. 165-205].
- [34] Henry C., 2001. Biologie des populations animales et végétales. Dunod, Paris.
- [35] Hillion A., 1986. *Les Théories mathématiques des populations*. Presses Universitaires de France, Paris.
- [36] Institut de veille sanitaire, 2012. Épidémie de rougeole en France. Actualisation des données de surveillance au 16 mars 2012, www.santepubliquefrance.fr.
- [37] Israel G., 1996. La visione matematica della realtà, Introduzione ai temi e alla storia della modellistica matematica. Laterza, Roma / Bari.
- [38] Jensen, P., 2018. Pourquoi la société ne se laisse pas mettre en équations? Seuil, Paris.
- [39] Kress R., 1999. Linear Integral Equations, 2^e éd., Springer, New York.
- [40] Landau L., Lifchitz E., 1994. Mécanique. Ellipses, Paris.
- [41] Lepoutre A., Antona D., Fonteneau L., Baudon C., Halftermeyer-Zhou F., Le Strat Y., Lévy-Bruhl D., 2011. Enquête nationale de séroprévalence des maladies infectieuses 2009-2010, premiers résultats. 12^{es} Journées nationales d'infectiologie, Montpellier, 8-10 juin 2011, www.infectiologie.com/UserFiles/File/medias/JNI/JNI11/CT/JNI2011-Sero-Inf-Lepoutre.pdf.
- [42] Lions P.-L., 2020. *Dans la tête d'un mathématicien*. HumenSciences, Paris.
- [43] Lobry C., 2018. La Relation ressource-consommateur. ISTE, Londres.
- [44] Lobry C., 2021. Qu'est ce que le pic d'une épidémie et comment le contrôler. Cassini / Spartacus-IDH, Paris.
- [45] Lotka A.J., 1938. Quelques résultats récents de l'analyse démographique, in : Congrès international de la population Paris 1937 I. Théorie générale de la population. Hermann, Paris: 96-107. https://gallica.bnf.fr/ark:/12148/bpt6k38656s
- [46] Lotka A.J., 1939. Théorie analytique des associations biologiques: ana-

lyse démographique avec application particulière à l'espèce humaine. Hermann, Paris. https://gallica.bnf.fr/ark:/12148/bpt6k387264

- [47] Méléard S., 2016. Modèles aléatoires en écologie et évolution. Springer, Berlin.
- [48] Messiah, A., 2003. Mécanique quantique, 2^e éd., Dunod, Paris.
- [49] Météo France, Données climatiques de la station de Gillot-aéroport, www.meteofrance.re/climat/reunion/gillotaeroport/97418110/normales.
- [50] Michel P., Mischler S., Perthame B., 2005. General relative entropy inequality: an illustration on growth models. *Journal de Mathématiques Pures et Appliquées* 84: 1235-1260.
- [51] Ministère de la Santé Publique du Maroc, 2001. État d'avancement des programmes de lutte contre les maladies parasitaires. Direction de l'épidémiologie et de lutte contre les maladies, Rabat.
- [52] Monasse D., 2016. *Cours de mathématiques*, 4^e éd., Spartacus-idh, Paris.
- [53] Monin J.-P., Benayoun R., Sert B., 1973. Initiation aux mathématiques des processus de diffusion, contagion et propagation. Gauthier-Villars, Paris.
- [54] Olver F.W.J., 1974. Asymptotics and Special Functions. Academic Press, New York.
- [55] Ovaert J.L., Verley J.L., 1997. Calculs asymptotiques, in Encyclopédie Universalis (éd.) Dictionnaire des mathématiques : algèbre, analyse, géométrie. Albin Michel, Paris: 47-62.
- [56] Picard P., 1965. Sur les modèles stochastiques logistiques en démographie. *Annales de l'I.H.P. Probabilités et statistiques* 2: 151-172.
- [57] Pierre V., Thiria J., Rachou E., Sissoko D., Lassalle C., Renault P., 2005. Épidémie de dengue 1 à La Réunion en 2004. *Journées de veille sanitaire 2005*, Poster nº13.
- [58] Pollitzer R., Girard G., 1954. *La Peste*. Organisation mondiale de la santé, Monographie 22, Genève.
- [59] Pressat R., 1995. Éléments de démographie mathématique. AIDELF, Paris.
- [60] Quarteroni A., Sacco R., Saleri F., 2005. Matematica numerica. Springer, Milano.
- [61] Raoult D., 2016. Les modèles prédictifs sont des prophéties modernes, *in* D. Raoult, *Arrêtons d'avoir peur*. Michel Lafon, Neuilly-sur-Seine.
- [62] Rax J.-M., 2020. Mécanique analytique. Dunod, Malakoff.
- [63] Raymond F., 1832. Dictionnaire général de la langue française

et vocabulaire universel des sciences, des arts et des métiers. Tome second, M-Z. Aimé André, Crochard et Levrault, Paris. https://gallica.bnf.fr/ark:/12148/bpt6k9672986f

- [64] Rombaldi J.-É., 2019. Analyse matricielle, 2^e éd., EDP Sciences.
- [65] Roques L., 2013. *Modèles de réaction-diffusion pour l'écologie spatiale*. Quæ, Versailles.
- [66] Rouche N., Mawhin J., 1973. Équations différentielles ordinaires, tome 1^{er}. Masson, Paris.
- [67] Rouchier J., Barbet V., 2020. *La Diffusion de la Covid-19 Que peuvent les modèles?* Éditions Matériologiques, Paris.
- [68] Sansonetti P., 2020. Covid-19 ou la chronique d'une émergence annoncée. Collège de France, www.college-de-france.fr/site/actualites/Covid-19ChroniqueEmergenceAnnoncee.htm.
- [69] Santé publique France, 2018. Épidémie de dengue à La Réunion Point épidémiologique au 19 juin 2018, www.santepubliquefrance.fr.
- [70] Santé publique France, 2020. Covid-19, point épidémiologique hebdomadaire du 9 avril 2020, www.santepubliquefrance.fr.
- [71] Sericola B., 2013. Chaînes de Markov. Lavoisier, Paris.
- [72] Serre D., 2001. Les Matrices. Dunod, Paris.
- [73] Tanner A., 2014. Von Molekülen, Parasiten und Menschen Alfred James Lotka und die Mathematisierung des Lebens. Politecnico federale di Zurigo. https://doi.org/10.3929/ethz-a-010209129
- [74] Thomas F., Lefèvre T., Raymond M., 2016. *Biologie évolutive*, 2^e éd., De Boeck, Louvain-la-Neuve.
- [75] Valleron A.-J. (éd.), 2006. L'Épidémiologie humaine, conditions de son développement en France et rôle des mathématiques. Académie des sciences / EDP Sciences.
- [76] Verley J.-L., 1997. Exponentielle & logarithme, in Encyclopédie Universalis (éd.) Dictionnaire des mathématiques: algèbre, analyse, géométrie. Albin Michel, Paris: 337-354.
- [77] Véron J., 2009. Réception de l'œuvre démographique de Lotka en France. *Population* 64: 355-376.
- [78] Vincent P., 1950. Alfred J. Lotka (1880-1949). Population 5: 13-14.
- [79] Zerner M., 1987. Quelques propriétés spectrales des opérateurs positifs. *Journal of Functional Analysis* 72: 381-417.
- [80] Zhao X.Q., 2003. Dynamical Systems in Population Biology. Springer.
- [81] www.chikungunya.net/faq/faq.htm

Inhoudsopgave

Ι	Ep	idemische modellen met constante coëfficiënten	1
1	S-I-	R modellen	2
	1.1	Vergelijkingen	2
	1.2	Uiteindelijke omvang van de epidemie	5
	1.3	Epidemische piek	9
		1.3.1 Datum van de epidemie-piek	11
		1.3.2 Studie van de functie $f(\mathscr{R}_0)$	15
		1.3.3 Opmerking	17
	1.4	Benadering wanneer de reproductiviteit dicht bij 1 ligt	18
2	S-E-	-I-R Modellen	22
	2.1	Vergelijkingen	22
	2.2	Epidemische piek	25
	2.3	Aanhangsel: Coöperatieve lineaire differentiële systemen	28
3	Rep	roductiviteit	33
	3.1	Stelsels van differentiaalvergelijkingen	33
	3.2	Een partiële differentiaalvergelijking	41
	3.3	Appendix: positieve matrices	44
4	Beg	in van de coronavirus epidemie in Frankrijk	47
	4.1	Een model	47
	4.2	Tweede fase met drastisch ingrijpen	52
	4.3	Een veralgemening	54
	4.4	Schatting van de reductieparameter	58
	4.5	Bijlage: een niet-exponentiële besmettelijke periode	59

5	Stoc	hastische modellen	62
	5.1	Waarschijnlijkheid van uitroeiing van epidemieën	62
		5.1.1 Vertakkingsprocessen	62
		5.1.2 Voorbeelden	64
	5.2	Model S-I-S	67
П	De	terministische modellen met periodieke coëfficiën-	
te	n		73
6	Perie	odieke matrixmodellen	74
	6.1	reproductiviteit	74
	6.2	Gevoeligheid van het groeipercentage	84
	6.3	Ongelijkheid tussen reproductiviteit en groeisnelheid	88
	6.4	Een monotone functie	90
7	Perie	odieke modellen in continue tijd	93
	7.1	Reproductiviteit	93
	7.2	Differentiële systemen	103
	7.3	Groei	113
	7.4	Een monotone functie	116
	7.5	Aanhangsel: Periodieke coöperatieve systemen	120
	7.6	Appendix: Krein-Rutman stelling	121
8	Een	door vectoren overgebrachte ziekte met seizoensgebonden-	
	heid		122
	8.1	Een leishmaniase epidemie in Marokko	122
	8.2	Model	124
	8.3	Analyse	126
	8.4	Simulatie en raming van de reproductiviteit	129
9	Bena	adering van reproductiviteit	135
	9.1	Een chikungunya epidemie in Réunion	135
	9.2	Herinnering aan de definitie van voortplanting	140
	9.3	Numerieke methoden voor het berekenen van de reproducti-	
		viteit	142
		0.2.1 Discustional and hat simple and internet langelines	140

	11010		112
	9.3.1	Discretisering van het eigenwaarde-integraal probleem	142
	9.3.2	Fourierreeksen: het algemene periodieke geval	143
	9.3.3	Fourier-reeksen: het sinusoïdale geval	144
	9.3.4	Toepassing van de theorie van Floquet	148
9.4	Door ve	ectoren overgebrachte ziekten	149

		9.4.1 Malaria	149
		9.4.2 Chikungunya op Réunion	151
	9.5	Andere toepassingen	156
	9.6	Appendix	157
10	Mod	ellen met een eenvoudige periodieke factor	159
	10.1	Inleiding	159
	10.2	Berekeningen	162
	10.3	Aanbevolen formules	164
	10.4	Een S-E-I-S model met een vaste latentietijd	165
	10.5	Conclusie	171
11	Groe	eisnelheid resonantie	173
	11.1	Inleiding	173
	11.2	Perturbatieve theorie: eerste orde formules	176
		11.2.1 Initiële groeisnelheid als eigenwaarde	176
		11.2.2 Eerste-orde perturbatieve formules voor de groeisnel-	
		heid	178
	11.3	Tweede orde formule en resonantie	181
	11.4	Voorbeelden	184
		11.4.1 Periodiek S-I-R model	184
		11.4.2 Periodiek S-I-R model met een vaste infectieperiode	185
		11.4.3 Periodiek S-E-I-R model	187
		11.4.4 Periodiek S-E-I-R model met een vaste latentietijd .	189
		11.4.5 Periodiek S-E-I-R model met een latentietijd verdeeld	
		volgens een Gamma-verdeling	191
	11.5	Duizend en één periodieke modellen	192
	11.6	Aanhangsel: De totale reproductieve waarde	194
12	Kerr	nack en McKendrick's model voor de pest in Bombay	195
	12.1	Een misleidende aanpassing	195
	12.2	Builenpest in Bombay	197
	12.3	Parameterwaarden	199
	12.4	Seizoensgebondenheid	202
	12.5	Reproductiviteit van een type met seizoensgebondenheid	210
	12.6	Langzaam-snelle dynamiek en het S-I-R model	213
	12.7	Conclusie	214

13	Uiteindelijke omvang van epidemieën met seizoensgebondenheid	216
	13.1 Periodiek S-I-R model	216
	13.2 Numerieke simulaties	219
	13.3 Drempelstellingen	225
	13.3.1 Periodiek S-I-R systeem	225
	13.3.2 Periodiek S-E-I-R systeem	227
14	Uiteindelijke omvang van epidemieën in een periodieke omgeving	
	met lage amplitude	232
	14.1 Een dengue epidemie in Réunion	232
	14.2 Exacte formule voor de correctiecoëfficiënt	235
	14.3 Benaderende formules	237
15	Uiteindelijke omvang van epidemieën in een hoogfrequente peri-	
	odieke omgeving	241
	15.1 Inleiding	241
	15.2 Enkele simulaties	242
	15.3 Nabijheid van de uiteindelijke omvang van de epidemie	245
16	Modellen voor endemische ziekten	249
	16.1 Persistentie in een endemisch model	249
	16.2 Twee concurrerende pathogenen	252
	16.3 Aanhangsel: positieve systemen	254
III	Stochastische modellen met periodieke coëfficiënten	256
17	Waarschijnlijkheid van uitsterven in een periodieke omgeving	257
1/	17.1 Fen type van besmette personen	257
	17.2. Verschillende soorten besmette personen	261
	17.3 Fen eenvoudig epidemiemodel voor mazelen in Frankrijk	270
	17.4 Herintroductie van soorten in de instandhoudingsbiologie	276
	17.5 Conclusie	278
	17.6 Aanhangsel: Periodieke coöperatieve systemen	279
18	Waarschiinliikheid van uitsterven in een trage periodieke omge	
	ving	281
	18.1 Een type van besmette personen	281
	18.1.1 Voorbereidende berekening	283
	18.1.2 Limiet $T \rightarrow 0$	284
	18.1.3 Limiet $T \rightarrow +\infty$	285

	18.1.4 Exemplarisch	287
	18.1.5 Link met de "eenden"	289
	18.2 Meerdere soorten besmette personen	291
	18.2.1 Model	292
	18.2.2 Voorbeeld	294
	18.2.3 Generalisatie	298
	18.2.4 Conclusie	299
19	Stochastisch S-I-S model in een periodieke omgeving	302
19	Stochastisch S-I-S model in een periodieke omgeving 19.1 Model	302 302
19	Stochastisch S-I-S model in een periodieke omgeving 19.1 Model 19.2 Analytische berekeningen	302 302 304
19	 Stochastisch S-I-S model in een periodieke omgeving 19.1 Model	302 302 304 304
19	Stochastisch S-I-S model in een periodieke omgeving 19.1 Model 19.2 Analytische berekeningen 19.2.1 Hamilton-Jacobi partiële differentiaalvergelijking 19.2.2 Heteroclinische baan	302 302 304 304 312
19	Stochastisch S-I-S model in een periodieke omgeving 19.1 Model 19.2 Analytische berekeningen 19.2.1 Hamilton-Jacobi partiële differentiaalvergelijking 19.2.2 Heteroclinische baan 19.3 Numerieke berekeningen	302 302 304 304 312 320
19	Stochastisch S-I-S model in een periodieke omgeving 19.1 Model 19.2 Analytische berekeningen 19.2.1 Hamilton-Jacobi partiële differentiaalvergelijking 19.2.2 Heteroclinische baan 19.3 Numerieke berekeningen 19.4 Opmerkingen	302 302 304 304 312 320 325
19	 Stochastisch S-I-S model in een periodieke omgeving 19.1 Model 19.2 Analytische berekeningen 19.2.1 Hamilton-Jacobi partiële differentiaalvergelijking 19.2.2 Heteroclinische baan 19.3 Numerieke berekeningen 19.4 Opmerkingen 19.5 Aanhangsel 	302 302 304 304 312 320 325 327